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» Unsupervised learning

» Supervised learning (weakly supervised, semi-supervised)

» Reinforcement learning

Focus today on supervised learning



. . [

» input x, output y - y = f*(x), f* (function/process/algorithm)
unknown

» One observes a series of input-output pairs

» From these observations, the learner A aims to identify, within a
family of functions, the best function to relate inputs to outputs



Supervised machine learning
Evaluation

A few words about data
Conclusion

Supervised learning (2)

Input : training set
> D= ((xD,y®) ... (x(" y))
» x real vector - x € RP
» y €)Y - binary classification : ) = {0,1}; simple linear regression :
YCR
Learning model
» Family of functions F - example : set of linear functions

» Cost function : measures the error made by the learned model (error
between y, desired output, and the predicted output
y'=1f(x), feF)

» Objective function : function to be optimized (minimized) - cost
function plus additional terms (regularization)

» Optimization method (to identify the "best” function acc. to the

objective function)
Eric Gaussier Introduction to machine learning



Loss (cost) function to evaluate the errors made by a learned model
on known input-output pairs
Loss function

L:YxY — RT such that L(y,y") > 0for y # y’

[llustration
» 0—1 loss :

n_ |0 ify=y,
L(y,y)—{ 1 otherwise

» Quadratic loss :
Ly,y)=(y—y')?



Looking for the function that minimizes the prediction errors

1. Ideal case - Functional risk minimization :

ar’gegin/x/yP(x,y)L(y, f(x))dxdy

R(F)=Epep [L(y.F ()]

Realistic case - Empirical risk minimization :



Looking for the function that minimizes the prediction errors

1. Ideal case - Functional risk minimization :

ar’gegin/x/yP(x,y)L(y, f(x))dxdy

R(F)=Epep [L(y.F ()]

2. Realistic case - Empirical risk minimization :

n
arg min B Z Ly, f(xD)) = arg min Remp(f; D)
fer N feF

Remp(#;p)



For f € F fixed, the empirical risk tends towards the true risk when
the number of training examples tends to infinity

Min(Rfonctionnel)

Remp




... when the number of examples is limited :

High Bias
Low Variance Hieh Variance
—

Prediction Error

Model Complexity

Solution :
Q(f) is a measure of the complexity of f

Image from "Elements of statistical learning”. Hastie, Tibshirani, Friedman. Springer



... when the number of examples is limited :

Prediction Error

Model Complexity

Solution : arg mingc 7 Remp(f) + AQ(f)
Q(f) is a measure of the complexity of f

Image from "Elements of statistical learning”. Hastie, Tibshirani, Friedman. Springer



regularization

A

arg min Remp(f) + A Q(f)
g p(f) + X (f)
feF o

regularization parameter
Regularization allows one to :
» Avoid selecting too complex functions

» Integrate prior knowledge and constraints



A learning model :

» Has access to a set of functions F

» Selects the "best” function from the training set and the objective
function defined by the user/designer

» Operates this selection following optimization methods (stochastic
gradient descent (SGD))



The user/designer defines or selects :

» The loss function adapted to the task addressed

» The regularization terms (Ly, Ly, ... regularization)



The user/designer defines or selects :

» The loss function adapted to the task addressed

» The regularization terms (Ly, Ly, ... regularization)

What about original representation of examples?



1. Before deep learning : huge effort devoted to pre-processing and the
selection and extraction of appropriate features

2. Deep learning : adequate choice of the architecture that will lead to
learn an appropriate representation (still need original
representation)



Let R* be the minimal functional over all possible functions. Let
Rz (fmin) be the minimal functional risk over the functions in F and
let Rx(f) be the functional risk of the function f in F.

One has :

R]:(f) — R* = SR]:(f) — R.F(fmin)l‘i‘ng(fmin) — R*l

estimation error approximation error
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Which family of functions?

Let R* be the minimal functional over all possible functions. Let
Rz (fmin) be the minimal functional risk over the functions in F and
let Rx(f) be the functional risk of the function f in F.

One has :

Rr(f) — R* = (Rr(f) — Re(fmin)) + (R¥(fmin) — RY)

estimation error approximation error

» The simpler the family is, the smaller the estimation error and the
bigger the approximation error are

» Inversely, the more complex the family is, the bigger the estimation
error and the smaller the approximation error are

Eric Gaussier Introduction to machine learning
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> ycR* xcR3
>y = f(x) = FE(FA(FD(x)))

» Depth of the network (number
of layers), dimensionality of
each layer

Couxl

he  lirecowche 2ndcouche  Couche
cachée cachée de sortie

dentrée




Which functions f' at each layer?
Let hi~! be the input of £/ (h® =x) :
Fi(hi=1) = o(W'hi~1 + b')
with hi=! € RPi, Wi € RPi1XPi bl € RPi+1
The function ¢ is a non-linear (in general) function called an
activation function (sigmoid, tanh, RELU)

wa




\ A {

vV v vy

An MLP is a universal approximator

Rich family of functions : good approximation but estimation more
complex

Number of parameters
Number of training examples
Regularization : L;—, Ly—, ... norm, dropout, max pooling

Quality of local minima?
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Train/test split

» Size of the annotated set, the training and test sets
» Train/test plit : 80-20, 70-30
» Random split, sometimes with constraints (time series)

» The model is learned on the training set and evaluated on the test
set - you should not even glance at the test set
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How to evaluate a learned model 7

Train/validation /test split

» Validation set to determine hyperparameter values (degree of a
polynomial function, number of neurons on each layer, ...)

» Random split 64-16-20 or 49-21-30

» For possible hyperparameter values (e.g., degree = 1, 2 or 3), learn
model on training set, evaluate it on validaiton set

» The select the best hyperparameter values and learn the associated
model on train+validation

» Finally evaluate this model on test set - you should not even glance
at the test set

Eric Gaussier Introduction to machine learning
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x-flod cross-validation

» Randomly partition data in k groups of equal size {g1,--- , gk}
(k-fold cross-validation) - k = 3,5, 10

» Construct k sets training-validation-test

» Set 1:train={g1, - ,gk—2}; valid.=gx_1; test = gx
» Set 2 : train.={g2, - ,gk—1}; valid.=gx; test = g1
> .

» Training, validation and evaluation on each set as before

» Compute average (over all sets) performance and associated
standard deviation

P> Advantage : avge, std deviation, and use of all training examples for
both training and testing



Scale effects

10 o

o [

% oo

o oo

Significant differences
» |s a system B which improves a system A by 0.008 pt really better?

» Statistical significance tests
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Annotated data may however be easily available in some contexts

Machine translation ; pre-training LLMs
Relevance of a web page for information retrieval

Objects in images, actions in videos



Annotated data may however be easily available in some contexts

» Machine translation; pre-training LLMs
» Relevance of a web page for information retrieval

» Objects in images, actions in videos
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» A rich, reactive domain opened to many actors

» Many questions still open
» Local minima
» Number of examples
» Generalization properties
» Adversarial examples, ...

In-distribution Attacks
Adversarial Traffic Signs

Classified as:  Stop  Speed limit (30)
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