
Advanced ML

– Computing similarities
in high dimensional spaces –

Eric Gaussier

Univ. Grenoble Alpes

UFR-IM2AG, LIG, MIAI@Grenoble Alpes

eric.gaussier@imag.fr

Eric Gaussier Computing similarities in high dimensional space 1

Table of content

Vector space representation

Computing the dot product

Conclusion

Eric Gaussier Computing similarities in high dimensional space 2

A simple and general representation: vectors

Most data are represented as real-valued (sometimes binary,
presence/absence information) vectors (temperature, rotation
speed, consumption, ...)

4-dimensional vector


−0,76
5,48
−28997
3076,23

 (binary, pres./abs.)


1
0
1
1


Document (texts or images) indexing is an operation that
produces vector space representations

Eric Gaussier Computing similarities in high dimensional space 3

Indexing steps

1. Segmentation
I Segment a text into words:

the importance of retrieving the good information
the, importance, of, retrieving, the, good, information

7 words but only 6 word types; depending on languages,
may require a dictionary

2. Stop-word removal (stop-word list)
3. Normalization

I Upper/lower-case, inflected forms, lexical families
I Lemmatization, stemming

→ Bag-of-words: importance, good, retriev, inform

Eric Gaussier Computing similarities in high dimensional space 4

Vector space representation

I The set of all word types constitute the vocabulary of a
collection. Let p be the size of the vocabulary and N be the
number of documents in the collection→ p-dimensional
vector space (each axis corresponds to a word type)

I Each document x is represented by a vector the
coordinates of which correspond to:
I Presence/absence or number of occurrences of the word

type in the doc: xi = tfxi (number of times i occurs in x)
I Normalized number of occurrences: xi =

tfx
i∑M

i=1 tfx
i

I tf*idf:
xi =

tfx
i∑M

i=1 tfx
i
log

N
dfi︸ ︷︷ ︸

idfi

where dfi is the number of docs in which word (type) i
occurs (idf: inverse document frequency)

Eric Gaussier Computing similarities in high dimensional space 5

Similarity and distance between vectors (1)

The vector space representation gives access to the
mathematical material associated to vector spaces: distances,
similarity measures, dimensionality reduction, ...

Notation: (x,x′) ∈ Rp, x =

x1
· · ·
xp

 , x′ =

x ′
1
· · ·
x ′

p


Dot product and cosine

x · x′ =

p∑
i=1

xi x ′
i , cos(x,x′) =

x · x′

||x||2 ||x′||2
=

x
||x||2

· x′

||x′||2

with the 2-norm ||x||2 =
√

x · x

Eric Gaussier Computing similarities in high dimensional space 6

Similarity and distance between vectors (2)

Illustration
The cosine (∈ [−1;1]) corresponds to the cosine of the angle
between two vectors. It is maximal when the two vectors are
colinear

Eric Gaussier Computing similarities in high dimensional space 7

Similarity and distance between vectors (3)

x =


0.7
−3.1

0
73

 , x′ =


5
−7
18
0



I x · x′ = 0.7× 5 + (−3.1)× (−7) + 0× 18 + 73× 0 = 25.2
I ||x||2 =

√
0.72 + (−3.1)2 + 0 + 732 ≈ 73.07

I cos(x,x′) ≈ 0.17

Eric Gaussier Computing similarities in high dimensional space 8

Similarity and distance between vectors (4)

Pres./abs. : x =


1
0
1
1

 , x′ =


1
1
1
0



I x · x′ = 1× 1 + 0× 1 + 1× 1 + 1× 0 = 2
Number of elements in common

I ||x||2 = ||x′||2 =
√

3
I cos(x,x′) = 2

3

Eric Gaussier Computing similarities in high dimensional space 9

Similarity and distance between vectors (4)

Pres./abs. : x =


1
0
1
1

 , x′ =


1
1
1
0



I x · x′ = 1× 1 + 0× 1 + 1× 1 + 1× 0 = 2
Number of elements in common

I ||x||2 = ||x′||2 =
√

3
I cos(x,x′) = 2

3

Eric Gaussier Computing similarities in high dimensional space 9

Similarity and distance between vectors (4)

Pres./abs. : x =


1
0
1
1

 , x′ =


1
1
1
0



I x · x′ = 1× 1 + 0× 1 + 1× 1 + 1× 0 = 2
Number of elements in common

I ||x||2 = ||x′||2 =
√

3
I cos(x,x′) = 2

3

Eric Gaussier Computing similarities in high dimensional space 9

Similarity and distance between vectors (5)

Euclidean distance between two vectors
d(x,x′) = ||x− x′||2 =

√∑p
i=1(xi − x ′

i)
2

On the previous exemple:
||x− x′||2 =

√
(1− 1)2 + (0− 1)2 + (1− 1)2 + (1− 0)2 =

√
2

Eric Gaussier Computing similarities in high dimensional space 10

Interlude

1. IR: queries and documents are both represented as
vectors; documents are ranked according to their similarity
(typically dot product) wrt a query

2. Classification (supervised learning): using a set of already
classified objects (training set), assign a new object to a
predefined category
I Find k nearest neighbors in set of already classified objects
I Select the most represented category (k -Nearest

Neighbors, k -NN)

3. Clustering (unsupervised learning): k -Means for example

Eric Gaussier Computing similarities in high dimensional space 11

Table of content

Vector space representation

Computing the dot product

Conclusion

Eric Gaussier Computing similarities in high dimensional space 12

Computing a dot product (simple case)

I Each vector can be represented by a p dimensional array
containing the coeffcients/coordinates/weights of the
vector; it is straightforward to write an algorithm that
computes the dot product between two such arrays x and
x′.

scal = 0.0
for i=1 to p do

scal+ = xi x ′
i

end

I Assuming we have N objects, what is the complexity of
computing the dot product between one object and all the
others?

→ O(Np)

Eric Gaussier Computing similarities in high dimensional space 13

Computing a dot product (simple case)

I Each vector can be represented by a p dimensional array
containing the coeffcients/coordinates/weights of the
vector; it is straightforward to write an algorithm that
computes the dot product between two such arrays x and
x′.

scal = 0.0
for i=1 to p do

scal+ = xi x ′
i

end

I Assuming we have N objects, what is the complexity of
computing the dot product between one object and all the
others?

→ O(Np)

Eric Gaussier Computing similarities in high dimensional space 13

Computing a dot product (simple case)

I Each vector can be represented by a p dimensional array
containing the coeffcients/coordinates/weights of the
vector; it is straightforward to write an algorithm that
computes the dot product between two such arrays x and
x′.

scal = 0.0
for i=1 to p do

scal+ = xi x ′
i

end

I Assuming we have N objects, what is the complexity of
computing the dot product between one object and all the
others?

→ O(Np)

Eric Gaussier Computing similarities in high dimensional space 13

Computing a dot product (simple case)

I Each vector can be represented by a p dimensional array
containing the coeffcients/coordinates/weights of the
vector; it is straightforward to write an algorithm that
computes the dot product between two such arrays x and
x′.

scal = 0.0
for i=1 to p do

scal+ = xi x ′
i

end

I Assuming we have N objects, what is the complexity of
computing the dot product between one object and all the
others?

→ O(Np)

Eric Gaussier Computing similarities in high dimensional space 13

Computing dot product in high-dimensional spaces (1)

I The above computation is too slow when p is large, say
above 104 which is typical of large textual collections.

I Such collections are sparse however, meaning that a
document contains very few words.
I p ≈ 104 is the number of words in the collection; a

document x ∈ Rp

I Document x ∈ Rp contains around 102 different words
I Most dimensions of x are null!

I Need for sparse representations

Eric Gaussier Computing similarities in high dimensional space 14

Computing dot product in high-dimensional spaces (2)

Example of a sparse representation

document x


int l (# of words in doc.)
ArrTerms int[l] (indices of words in doc.,

in increasing order)
ArrWeigh float[l] (weights of words)
· · ·

Eric Gaussier Computing similarities in high dimensional space 15

Computing dot product in high-dimensional spaces (3)

Example
I Vocabulary: {language, programming, C, python, java,

objects, compilation} (indexed from 1 to 7).
I Document x contains programming, which occurs 7 times,

and C, which occurs 3 times.
I Weight: normalized number of occurrences

x =


l = 2
ArrTerms[0] = 2, ArrTerms[1] = 3
ArrWeigh[0] = 0.7, ArrWeigh[1] = 0.3
· · ·

Eric Gaussier Computing similarities in high dimensional space 16

Computing dot product in high-dimensional spaces (4)

Algorithm - dot product between x and x′

scal = 0.0, i = 0, j = 0
while (i < (x.l-1) && j < (x’.l-1)) do

if x.ArrTerms[i] < x’.ArrTerms[j] then
i++

else if x.ArrTerms[i] > x’.ArrTerms[j] then
j++

else
scal+ = x .ArrWeigh[i] x ′.ArrWeigh[j]
i++, j++

end
end

Complexity: O(x .l + x ′.l) = O(lm) where lm average size of a
document (roughly 102 in large textual collections)

Eric Gaussier Computing similarities in high dimensional space 17

Computing dot product in high-dimensional spaces (5)

Illustration

x.ArrTerms: 2 7 11 237
x.ArrWeigh: 0.1 2.3 0.765 1.09

x’.ArrTerms: 1 11 789
x’.ArrWeigh: 8.34 0.17 1.23

Eric Gaussier Computing similarities in high dimensional space 18

Inverted file (1)

It is also possible to accelerate the comparison between one
document (query) and all documents of the collections as in
many cases a given word only occurs in few documents
(another sparsity property). The trick is to use an inverted file
which provides, for each word, the list of documents (again
sorted in increasing order of the index of the doc) containing
the word.

mot i


int l (# of docs)
TabDocs int[l] (indices of docs, increasing order)
· · ·

Remark Useful for measures for which the contribution of terms
not present in a document is null (dot product and cosine but
not Euclidean distance)

Eric Gaussier Computing similarities in high dimensional space 19

Inverted file (2)

Algorithm - dot product between x and all other documents

1. For each word in x, retrieve all docs in x .TabDocs[]; put
them in list L

2. Compute dot product between x and all docs in L (and
not all docs of the collection!)

Complexity: Let Lm denote the average number of docs in
which a word occurs

⇒ O(lmLmlm) = O(Lml2m)

As Lm ≈ 103 or 104, gain of 107 or 106 compared to O(pN) with
N ≈ 109 and p ≈ 105.

Eric Gaussier Computing similarities in high dimensional space 20

Building the inverted file

In a static collection, 3 main steps:
1. Extraction of pairs of indices (word, doc); single pass over

collection
2. Sorting above pairs according to word id, then doc id
3. Merging pairs to get, for each word, the list of docs

containing it
These steps raise no problem when the collections are
sufficiently small to fit in memory

What about big collections?

Eric Gaussier Computing similarities in high dimensional space 21

When the memory is not sufficient - The BSBI
algorithm (1)

One stores intermediate files on disk, prior to merge them in a
single inverted file

1. Extraction of pairs of word and doc ids and storage on disk
(global file)

2. The global file is read block by block, each block fitting in
memory; for each block, construct an inverted file and
store it on disk (partial inverted file)

3. Merging all partial inverted files to create a global inverted
file

Associated algorithm: Blocked sort-based indexing (BSBI)

Eric Gaussier Computing similarities in high dimensional space 22

When the memory is not sufficient - The BSBI
algorithm (2)

The inversion in BSBI consists in sorting (word,doc) od pairs
according to word ids then doc ids (complexity typically in
O(T logT) where T is the number of pairs). The merging step
uses the same trick as the one used to compute the dot
product:

Eric Gaussier Computing similarities in high dimensional space 23

Illustration (1)

Toy example with 5 words (w1, ...,w5) and 8 docs (d1, ...,d8).
Only 3 pairs (word id, doc id) can fit in memory.

Global file:
w1 : d1 w2 : d4 w2 : d1
w3 : d8 w1 : d3 w4 : d7
w5 : d5 w2 : d2 w1 : d6

Eric Gaussier Computing similarities in high dimensional space 24

Illustration (2)

Reading global file block by block and sorting to partial inverted
files.

w1 : d1 w2 : d4 w2 : d1 ⇒ w1 : d1 w2 : d1 w2 : d4

w3 : d8 w1 : d3 w4 : d7 ⇒ w1 : d3 w3 : d8 w4 : d7

w5 : d5 w2 : d2 w1 : d6 ⇒ w1 : d6 w2 : d2 w5 : d5

Eric Gaussier Computing similarities in high dimensional space 25

Illustration (3)

Merging partial inverted files.

w1 : d1 w2 : d1 w2 : d4

w1 : d3 w3 : d8 w4 : d7

w1 : d6 w2 : d2 w5 : d5

⇒Write (w1 : d1) to global inverted file. The partial inverted
files become:

w2 : d1 w2 : d4

w1 : d3 w3 : d8 w4 : d7 ...

w1 : d6 w2 : d2 w5 : d5

Eric Gaussier Computing similarities in high dimensional space 26

Table of content

Vector space representation

Computing the dot product

Conclusion

Eric Gaussier Computing similarities in high dimensional space 27

Conclusion

I Simple but efficient algorithms (mandatory to deal with
large sparse collections)

I Straightforward to parallelize (additional gain)
I Efficient algorithms also exist for computing

approximations of similarity value (MinHash [1] for
detecting duplicate web pages)

[0] C. Manning, P. Raghavan, H. Schütze, ”Introduction to
Information Retrieval”, 2008 (https://nlp.stanford.edu/IR-
book/information-retrieval-book.html)

[1] A. Roder, "On the resemblance and containment of
documents", In Proc. of Compression and Complexity of
Sequences, 1997

Eric Gaussier Computing similarities in high dimensional space 28

	Vector space representation
	Computing the dot product
	Conclusion

