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ABSTRACT

Uplift modeling is an important yet novel area of research in ma-
chine learning which aims to explain and to estimate the causal
impact of a treatment at the individual level. In the digital advertis-
ing industry, the treatment is exposure to different ads and uplift
modeling is used to direct marketing efforts towards users for whom
it is the most efficient [1]. To foster research in this topic we re-
lease a publicly available collection of 25 million samples from a
randomized control trial, scaling up previously available datasets
by a healthy 590x factor. We provide details on the data collection
and sanity checks performed that allow the use of this data for
counter-factual prediction. We formalize the task of uplift predic-
tion that could be performed with this data, along with the relevant
evaluation metrics. Finally we show that the dataset size makes
it now possible to reach statistical significance when evaluating
baseline methods on the most challenging target.
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1 INTRODUCTION

Performance advertising has become a very successful model of
programmatic advertising where advertisers payment is based on
delivered value as measured by events of interest (mostly site visits
and conversions). The industry standard practice is to attribute
conversions to advertising events such as ad displays and clicks.
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However, such after the fact attribution cannot be made causal
unless the analyst assumes that all variables potentially influencing
the outcome are observed, referred to as unconfoundedness in
the literature [2], a very strong assumption in nowadays complex
advertising landscape [3]. On the other side advertisers perform
incrementality tests, a particular randomized control trial where
part of the users are prevented from being targeted to measure the
causal effect of advertising campaigns [4]. This approach is immune
to unobserved confounders but is limited to the estimation of the
Average Treatment Effect (ATE). The corresponding task at the
individual level is uplift modeling also called Individual Treatment
Effect (ITE) estimation especially in the observational causality
literature.

Previous works on uplift/ITE prediction were evaluated on syn-
thetic data [5], non-counter-factual data [6], small, medical data
[7] [8] or closed data [9], all of which incur particular limitations
in interpretability or reproducibility. For instance, non-causal data
introduces a bias as the treatment is no more independent from the
covariates, hence limiting the interpretability unless special assump-
tions and methods from observational causality are introduced into
the picture. In 2008 a medium-scale, counter-factual dataset has
been released [10] and used in publications [11] [12] [13] [14]. As
we will discuss in Section 3 and 5 the CRITEO-UPLIFT1 dataset can
be seen as a continuation of this pioneering work that opened the
door to more realistic, reproducible research. In particular we scale
it up in terms of data size but also challenge as the imbalance in
treatment/control is increased and average response level is much
lower.

2 PROBLEM FORMULATION

The causal uplift U(x) is the expected difference in outcome should
the individual be selected to take the treatment or not. We formalize
it using Pearl’s causal inference framework [15] in Equation 1.

U(x) = E[Y|X = x,do(T = 1)] - E[Y|X = x,do(T = 0)] (1)

Conversely, the conditional uplift u(x) in Equation 2 is the ex-
pected difference in outcome when the individual has taken the
treatment or not: that is when we observe it after the fact.

ulx) =E[Y|X=x,T=1]-E[Y|X =x,T = 0] (2)

Causal and conditional uplifts are equivalent if treatment was
administered at random:

T 1LX=U(x) =ux)
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Note that it is always possible to learn a predictor of u(x) using
traditional approaches in supervised learning, even though we only
observe treatment and its outcome from a given experiment. How-
ever, in order to interpret the uplift predictions as causal (especially
for taking actions like exposing users to ads or taking medicine)
the model must be learned on data for which U(x) = u(x). In par-
ticular, data collected in a counter-factual manner, for example in a
randomized control trial (A/B test) fits that purpose. Therefore we
assume a dataset composed of i.i.d. samples of the joint covariates
X, label Y and treatment T variables:

D ={X;i,Yi, Titi=1..n s Ti L Xi,Vi
Learning algorithms have access to D and can learn any distri-
butions (we will see that there are multiple possible choices). We
consider a binary outcome: at inference time the model performs a
prediction of the form:

i(x) = Pr(Y = 1|1X = x) = Po(Y = 1]X = x)
that is with the same x the model predicts the difference between
two potential outcomes Pr(Y|X = x) and Pc(Y|X = x), if the
subject is treated or not, respectively.

3 DATASET

The CRITEO-UPLIFT1 dataset is constructed by assembling data
resulting from several incrementality tests, a particular randomized
trial procedure where a random part of the population is prevented
from being targeted by advertising. The dataset consists of 25M
rows, each one representing a user with 12 features, a treatment
indicator and 2 binary labels (visits and conversions). Positive labels
mean the user visited/converted on the advertiser website during
the test period (2 weeks). The global treatment ratio is 84.6%. It is
usual that advertisers keep only a small control population as it
costs them in potential revenue. For privacy reasons the data has
been sub-sampled non-uniformly so that the original incrementality
level cannot be deduced from the dataset while preserving a realis-
tic, challenging benchmark. Feature names have been anonymized
and their values randomly projected so as to keep predictive power
while making it practically impossible to recover the original fea-
tures or user context. The dataset is available publicly from the
Criteo datasets Web page!.

3.1 Pitfalls & Sanity Checks

Collecting such a dataset can be challenging as there are potentially
many pitfalls that can impair the causal interpretation of the data.
A particular characteristic of the current generation of production
systems is that they target users dynamically based on observed
interactions over time [16] . That means that even in a randomized
control trial (A/B test) setup interactions with the system influence
subsequent ad exposure via adjustments of the bids based on user
reactions. In particular, interactions after the first one are influenced
both by the treatment and by the first interactions. This situation
calls for either considering only the first interaction of a user during
an A/B test or to log the user variables at the start of the test and
observe the reward during the test. We have chosen the latter

!http://cail.criteo.com/criteo-uplift-prediction-dataset/
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solution as it enforces logging of features at the same time for
all users, minimizing chances to observe temporal shifts in their
distribution for different reasons like sales periods or production
platform evolutions.

We performed a first sanity check: no users in the control pop-
ulation should be exposed to ads during the test. We observed a
feeble 0.001% ratio of non-compliance to this assumption and chose
to remove these users from the dataset.

A second sanity check is that the treatment should be inde-
pendent of the features: T L X. A convenient way to verify this
assumption is to perform a Classifier 2 Sample Test (C2ST) [17]:
a classifier trained to predict treatment should not do better than
chance level. The distribution of Hy in this case is obtained by com-
puting the test loss of classifiers trained to predict random splits in
the data. Figure 1 illustrates the null distribution of the Hamming
loss.

=== Treatment
Median under Hy

Distribution under Hy

Freguency

0145 0150 0155 0160 0165 0170
Hamming Loss

Figure 1: CRITEO-UPLIFT1: Empirical distribution of Ham-
ming loss under Hy (blue), median under Hy (blue, dotted)
and treatment classifier loss (green, dotted). Predicting treat-
ment is as good as predicting a random split.

Table 1 gives the result of the test. Note that chance level is not
0.5 but rather 1 — T ~ .15, that is the performance of a dummy
classifier always predicting T. The empirical loss of the learned
treatment classifier is very close to the dummy one from Hy, which
is reflected by a high p-value for the one-sided test.

Median Random Loss  Treatment Loss p-value

0.15312 0.15284 0.47176

Table 1: CRITEO-UPLIFT1: Result of C2ST on treatment pre-
dictability with 300 resamples using Hamming loss. The p-
value doesn’t allow to reject Hy and validates that T 1L X

A third level of sanity check is to make sure that logged features
are informative and relevant for predicting outcomes (visit and con-
version). This is not necessarily trivial as we sampled features that
were technically easy to log and anonymized them. Table 2 presents
the performance (as measured by log-loss) of classifiers learned on
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the outcomes for treatment, control and the whole dataset. The non-
trivial improvement over a dummy baseline indicates that features
are indeed informative for the task. We also measure positive, sub-
stantial mutual information of each individual feature and outcome
but don’t provide detailed results to reduce clutter.

log-loss improvement (%)

conversion 59.80
conversion (control) 43.00
conversion (treated) 49.52
visit 51.70
visit (control) 55.02
visit (treated) 53.41

Table 2: CRITEO-UPLIFT1: Improvement over the log-loss of
a dummy classifier for different outcomes and groups. Base-
line is a classifier predicting the average outcome, and im-
provement is relative to baseline. Big improvements indi-
cate that the features have predictive power.

3.2 Comparison to Existing Datasets

We now compare the CRITEO-UPLIFT1 dataset to the second largest
and most popular uplift prediction dataset: HILLSTROM [10]. We
don’t consider datasets from health and medecine as their size
is unrealistically small for our application (in the range of 100’s).
HILLSTROM contains results of an e-mail campaign for an Inter-
net based retailer. The dataset contains information about 64,000
customers who last purchased within at most twelve months. The
customers were involved in an e-mail test and were uniformly as-
signed to receive an e-mail campaign featuring men’s merchandise
/ women’s merchandise or not receive an e-mail. We report results
on the Women’s merchandise e-mail versus no e-mail split as in
previous research [12] (the other partition is similar).

Table 3 summarizes the two datasets. Criteo dataset is much
larger (a 590x factor). The treatment is not balanced, a typical sit-
uation when running incrementality tests on live campaigns. Of
course one could down-sample the control population of Hillstrom
to simulate such a situation but the data size would be ridiculously
small. Both datasets pass the treatment independence test: barely
for Hillstrom and with a high margin for Criteo. Although the re-
sponse levels are 3x less in Criteo for both targets (making it more
challenging) provided features are informative enough to learn a
good predictor. We don’t recommend to use the conversion target
for Hillstrom as there are only 311 positive examples. The uplift
levels are comparable.

4 EVALUATION

The dataset was collected and prepared with uplift prediction in
mind as the main task. Additionally we can foresee related usages
such as modeling, answering questions such as for instance: Is the
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Metric HILLSTROM CRITEO-UPLIFT1
Size 42,693 25,309,483
Treatment Ratio .50 .85
Average Visit .12883 .04132
Average Conversion .00728 .00229
Relative Avg. Uplift (visit, %) 42.6 68.7
Relative Avg. Uplift (conversion, %) 54.3 37.2
Treatment Independence .056 .470
Learnability (visit, %) 45.81 51.70
Learnability (conversion, %) 48.85 59.80

Table 3: Summary of datasets characteristics. Independence
is measured as C2ST p-value. Learnability is estimated as
log-loss improvement over baseline

response uniformly affected by the treatment or are there rich inter-
actions between features and treatment. Similarly, and in the spirit
of [18] one could also explore heterogeneity of treatment. Finally
this dataset could also be used as benchmark for observational
causality methods [3] as it contains the randomized causal effect
plus covariates and exposure to compute propensity scores. In the
rest of this section we focus on the uplift prediction task.

4.1 Metrics

The fundamental problem of evaluation for uplift prediction is
that we observe only one of the potential outcomes y|do(t = 1) or
yldo(t = 0), preventing the use of a direct loss on the uplift. There-
fore one is bound to estimate if the predicted uplift is reasonable
for paired groups of samples. For instance, consider the difference
between two potential uplifts:

UGxy) ~ Ux) = jldoft = 1) - ysldo(t = 1)
= (yjldo(t = 0) — yildo(t = 0)
Even though we can only observe two variables out of four we

know the sign of the difference in some cases; e.g. yj|do(t = 1) = 1
and y;|do(t = 1) = 0, then the difference is positive:

©)

Uxj) - U(xj)) =1-0

— (yjldo(t = 0) = yj|do(t = 0)) > 0 “)

Two main metrics have been proposed? and both rely on the
mentioned strategy. They also draw on ROC curves traditionally
used for classifier evaluation and can be seen as natural extensions
in the uplift case. The general idea is to rank individuals in the
evaluation set according to their predicted uplift and cumulatively
sum over them a measure of the actual, group-wise uplift. The
intuition is that a good model should be able to select individuals
with positive outcome in the treated group and negative outcome
in the control group first.

Notations. For a given model let 7z be the ordering of the dataset
satisfying 47 (x;) > 47 (xj), Vi < j. We note (k) the first k samples
sorted according to the descending predicted uplift @™ (x): #(k) =

2for completeness other metrics exist, especially if the analyst is willing to assume
unconfoundedness [19]
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Figure 2: Typical Uplift curve, as used to compute AUUC.

{di € D}i=y, ..k thus satisfying 4(x;) > (x;), Vi < j and @(x]) <
W(x;)VI > k,i < k.

To define the uplift prediction performance let R, (k) be an

amount of positive outcomes among the first k data points:
Rr(k) = Xd,en(k) Llyi = 1] and we define R,T[(k) and Rg(k) as the
numbers of positive outcomes in the treatment and control groups
respectively among the first k data points: R]];(k) =R, (k)|T =1,
RC(k) = Ry (k) T = 0.

To define a baseline performance let also RT (k) and R€(k) be
the numbers of positive outcomes assuming a uniform distribution
of positives: RT (k) = k - E[Y|T = 1], R(k) = k - E[Y|T = 0].

Finally, let N ,{ (k) and N, ,? (k) be the numbers of data points from
treatment and control groups respectively among the first k.

Area Under Uplift Curve (AUUC) [7] is based on lift curves
[20] which represent the proportion of positive outcomes (the sen-
sitivity) as a function of the percentage of the individuals selected.
Lift curve has the same ordinate as the ROC, but a different abscissa.
Uplift curve is defined as the difference in lift produced by a classi-
fier between treatment and control groups, at a particular threshold
percentage k/n of all examples. Figure 2 illustrates a typical Uplift
curve.

AUULC is obtained by subtracting the respective Area Under Lift
(AUL) curves:

AUUC, (k) = AULT (k) — AULS (k)

- i (RE® - RS®) - & (R0 - k) )
uplift baseline

The total AUUC is then obtained by cumulative summation:

1
n
AUUC = / AUUC, (p)dp ~ © ZAUUC,,(k)dk 6)
n
5 k=1

Uplift curves always start at zero and end at the difference in
the total number of positive outcomes between subgroups. Higher
AUUC indicates an overall stronger differentiation of treatment
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Figure 3: Typical Qini curve

and control groups.

Qini coefficient [1] or Q is a generalization of the Gini coef-
ficient for the uplift prediction problem. Similarly to AUUC it is
based on Qini curve, which shows the cumulative number of the in-
cremental positive outcomes or uplift (vertical axis) as a function of
the number of customers treated (horizontal axis). The formluation
is as follows:

k T
N (T e NEGK)
0= 3. (e - R0 0 )
uplif't (7)
N w0 - o)
[ S ——
baseline

A perfect model assigns higher scores to all treated individuals
with positive outcomes than any individuals with negative out-
comes. Thus the perfect model initially climbs at 45°, reflecting
positive outcomes which are assumed to be caused by treatment.
After that the graph proceeds horizontally and then climbs at 45°
down due to the negative effect. In contrast, random targeting
results in a diagonal line from (0, 0) to (N, n) where N is the pop-
ulation size and n is the number of positive outcomes achieved
if everyone is targeted. Real models usually fall somewhere be-
tween these two curves, forming a broadly convex curve above the
diagonal, as shown on Figure 3.

Given these curves we can now define the Qini coefficient Q for
binary outcomes as the ratio of the actual uplift gains curve above
the diagonal to that of the optimum Qini curve:

3 Qxiydk

0r=tl—— ®
5 O (k)i
k=1

where 7* relates for the optimal ordering. Therefore Q theoreti-
cally lies in the range [-1, 1].

Choice of metric for this task can seem unclear at first since
both Equations 5 and 7 share the same high level form: a cumulative
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sum of uplifts in increasing share of the population penalized by
subtracting a baseline corresponding to a random model.

A first difference is that Qini corrects uplifts of selected individ-
uals with respect to the number of individuals in treatment/control
using the NI (k)/NS (k) factor. Imagine a model selecting majorly
treated individuals at a given k. The uplift part of AUUC(k) can be
maximized by accurately selecting positive among treated, even if
there is a large proportion of positives in selected control individu-
als. Contrarily, Q(k) would penalize such a situation. We observe
in practice that Qini tend to be harder to maximize but should be
preferred for model selection as it is robust to this group selection
effect. Also, given that at inference time uplift models are used to
predict both counter-factual outcomes we should prefer a metric
that evaluates accordingly.

A second advantage of Qini is that it is normalized (8) and thus
more comparable when datasets are updated over time, a typical
case in some applications. We report Qini metrics in the rest of this

paper.

4.2 Methods

The most basic method to predict uplift is Two-Model method,
which uses two separate probabilistic models - first one fits on
treatment group and predicts probability Pr(Y = 1|X) while second
one uses control group and predicts Pc(Y = 1|X). Uplift then can
be computed as 42™(x) = Pr(Y = 11X = x) = Po(Y = 1|X = x).
For this method any classification model can be used and if both of
classifiers perform well, uplift model will also perform highly.
Jaskowski and Jaroszewicz [8] propose a Class variable trans-
formation or Revert Label method for adapting standard classi-
fication models to the uplift case. Authors create a new label Z as
follows:
1 fT=1andY =1,
Z=41 ifT=0andY =0,
0 otherwise.

and for uplift prediction in case of balanced treatment-control
subgroups they obtain:

Pr(Y = 1]X) = Po(Y = 1|X) = 2P(Z = 1]X) - 1.

As in the two-model method, any classifier can be used to predict
P(Z = 1|X).

Other methods include some transformed variants of SVM
[13], [7] and tree-based algorithms [6], [21], [14]. SVM algorithms
designed for uplift prediction have specific tasks such as construc-
tion of two separating hyperplanes instead of one or optimizing of
ranking measure between pairs of examples. Tree-based methods
incur finding splits in the data that optimize local variants of uplift.
Both families of methods have in common that they are generally
not trivial to scale in terms of either learning or inference time.

5 EXPERIMENTS

In this section we compare performance of the uplift prediction
models on a Hillstrom and CRITEO-UPLIFT1 datasets. The focus is
not necessarily on providing the best possible baseline but rather
to highlight the fact that the Criteo dataset is a natural extension of
Hillstrom, scaling up both in size and challenge while permitting
to obtain statistical significance in the results. For this reason we
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chose Two-Model and Revert-Label approaches as they scale easily
and their performance is quite close in our experience.

For the experiments we firstly preprocess datasets, specifically
we normalize the features, for the classification we use Logistic
Regression model with default parameters from Scikit-Learn [22]
Python library. Then we do each experiment in the following way:
we do 30 stratified random train/test splits both for treatment and
control groups with a ratio 70/30, for Hillstrom dataset we use full
dataset and for the CRITEO-UPLIFT1 we compare performance on
100,000, 1,000,000 and 10,000,000 randomly picked data points and
on full dataset as well. For both datasets we use outcomes "visit"
and "conversion".

Qini — 2M Qini — RL

Hillstrom-Visit-full

CU1-Visit-5.10%
CU1-Visit-10°
CU1-Visit-10°
CU1-Visit-107
CU1-Visit-full

0.0614 + 0.0207
0.1703 £ 0.0321
0.1500 + 0.0246
0.1937 £ 0.0108
0.1910 £ 0.0027
0.1872 £ 0.0024

0.0609 + 0.0174
0.3154 £ 0.0134
0.3120 £ 0.0055
0.3127 £ 0.0026
0.3135 £ 0.0009
0.3119 £ 0.0006

Hillstrom-Conversion-full  0.0914 + 0.0804 -0.0109 + 0.1174
CU1-Conversion-5.10% 0.2992 + 0.0998 0.2283 £ 0.0668
CU1-Conversion-10° 0.3560 + 0.0673 0.2542 + 0.0324
CU1-Conversion-10° 0.2331 £ 0.0261 0.2486 + 0.0133
CU1-Conversion-107 0.2329 + 0.0092 0.2536 + 0.0051
CU1-Conversion-full 0.2315 £ 0.0049  0.2671 £ 0.0030

Table 4: Comparison of Qini scores for Two-Model (2M) and
Revert-Label (RL) approaches on increasingly challenging
datasets. Confidence is at 10% level.

Table 4 presents the results of the experiments. For readability’s
sake we also provide the same results in Figure 4 and 5 for visit
and conversions, respectively. A first general comment is that the
Qini values for the Criteo dataset are much bigger in general. For
both visit and conversion targets on Hillstrom dataset the two
selected methods are indistinguishable by their Qini score as their
confidence intervals overlap almost entirely. For visits one begins
to reach significance with the smallest extract of the Criteo dataset
(CU1 — 5e4), which is comparable by the size with Hillstrom data.
Logically, as conversions are rare and suffer from high variance one
must use the largest samples CU1 — 1e7 or CU1 — full to obtain
a similar result with conversion as a target. Hence it justifies the
need for a large dataset for such a challenging target.

6 CONCLUSION
We have highlighted the need for large scale benchmarks for uplift

modeling in the digital advertising industry and released an open
dataset two orders of magnitude larger and more challenging than
previously available. We have discussed the collection and sanity
checks for its counter-factual, as well as usable nature. In particular
we have shown that it enables research in uplift prediction with
imbalanced treatment and response levels (e.g. conversions). We
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have also indicated a few other tasks for which this dataset can be
useful.

Future research in uplift prediction could encompass the scaling
of existing, involved methods as well as designing methods fit for
imbalanced treatment level and low average response.

035
—— two-model
=+ revert label
— .

0.30
025

0.20

010

005

HS-V-full CU1-V-5ed4 CU1-v-1e5 CU1-V-1e6 CU1-v-1e7 CU1-V-full
dataset

Figure 4: Comparison of Q values within different datasets
using "visit" outcome.
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Figure 5: Comparison of Q values within different datasets
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