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Abstract

In this paper we propose a simple yet effective method
for sparsifying a posteriori linear models for large-scale
text classification. The objective is to maintain high
performance while reducing the prediction time by pro-
ducing very sparse models. This is especially impor-
tant in real-case scenarios where one deploys predictive
models in several machines across the network and con-
straints apply on the prediction time. We empirically
evaluate the proposed approach in a large collection of
documents from the Large-Scale Hierarchical Text Clas-
sification Challenge. The comparison with a feature
selection method and LASSO regularization shows that
we achieve to obtain a sparse representation improving
in the same time the classification performance.

Keywords: large-scale text classification, sparsifica-
tion, feature selection.

1 Introduction

In large-scale scenarios like for example, ad-click predic-
tion, text and gene classification, much attention has
been given to the deployment of linear models, mostly
due to their simplicity and efficiency. In such scenarios,
the vector representation of data is often sparse and
the size of the feature space exceeds the size of the
available training examples. Also, in several applica-
tions constraints in both space and test-time prediction
may apply making cumbersome the maintenance of
large models. For instance, for the DMOZ dataset of
the LSHTC challenge [PKB+15] which contains over
27,000 classes and over half a million of features a linear
model would require approximately 123 Gb of memory.
Besides this, many features in such datasets are corre-
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lated or uninformative and can harm the performance
of a predictive model.

For reducing the size of the feature space and remove
irrelevant attributes one may rely to feature selections
algorithms as described by Guyon et al.[GE03]. An
effective method for feature selection is Recursive Fea-
ture Elimination which uses an estimator (for example
a Support Vector Machine (SVM)) in order to assign
weights to the features. Progressively, the method se-
lects and evaluates subsets of features. It is evident that
such wrapper methods are costly for large-scale cases
as the performance of the model has to be evaluated
repeatedly. Beside this, a popular method for reducing
memory requirements is the use of L1-norm as penal-
ization term (also known as LASSO), which induces
sparsity to the model [Tib94]. Koshiba et al.[KA03]
demonstrates after extensive experiments on multiple
datasets that L1-loss SVM gives very sparse models
with accuracy results close to the one obtained with
L2-loss SVM.

However in applications, like in text classification, the
size of the feature space exceeds the number of available
examples and the features are correlated; in these cases
the performance in terms of accuracy of LASSO is dom-
inated by the use of L2-norm [Tib94, ZH05, AAG+11].
But, L2-norm produces dense solutions which cannot
scale well in large classification problems.

In this work we consider large-scale text classification
(LSTC) tasks. We target a method that should:

• Provide a similar or better performance to L2-norm
regularization.

• Produce very sparse models.

For achieving this we propose a simple approach for
sparsifying linear models, a posteriori, learned with
L2-norm regularization. The proposed method achieves
to produce very sparse models which reduces the re-
quired storage space and improves inference time. This
is especially important in large-scale problems where
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predictive models are deployed in several machines and
constraints apply on prediction time. While, such round-
ing techniques are not well suited for on-line methods
[LLZ09] we find that in the case of batch methods and
text applications are effective.

We empirically evaluate the proposed approach on a
large dataset from the LSHTC competition achieving
not only to produce sparse models reducing thus mem-
ory requirements, but also to improve the predictive
performance. We also highlight important factors for
sparse models in text classification by analyzing the
obtained solutions.

In Section 2, we position our work with respect to
the state of the art. In Section 3, we then present the
a posterior pruning approach we propose for LSTC.
In Section 4, we present experimental results obtained
with our approach on a subset of the DMOZ dataset.
Finally, in Section 5 we discuss the outcomes of this
study and give some pointers to further research.

2 Related Work

Bi et al. [BBE+03] propose a bootstrap method for se-
lecting variables by constructing a series of linear SVMs
and eliminating, after performing a linear combination
of the classifiers, the variables for which the weight
values do not exceed a certain threshold. Langford et
al. [LLZ09] introduces a method, called truncated gra-
dient, which modifies the gradient rule in the standard
stochastic gradient descent algorithm. The idea is to
shrink the weights that are smaller than a predefined
threshold gradually. Our method works in a similar
manner but we focus on batch learning methods while
inducing sparsity in the model a posteriori as we focus
mainly in improving prediction time. Bolasso [Bac08]
is a bootstrapped version of Lasso which selects the
intersection of the set of variables selected by several
replications of Lasso using bootstrap samples.

Aseervatham et al. [AAG+11] propose a sparse ver-
sion of ridge logistic regression for altering the solution
provided by ridge logistic regression. The authors de-
fine a strictly convex optimization problem for finding
a sparse solution around the ridge solution using L1

regularization. This method is in-line with our work
as it performs a posteriori the sparsification on the
learned model. Thresholding techniques have also been
studied in the context of wavelets in signal processing.
For a thorough treatment of multi-disciplinary sparse
methods the interested reader is referred to [MBP14].
A method for features selection for SVMs is introduced
in [TWT10]. More specifically, by introducing a binary

vector which controls the selection or not of the features,
the authors pose a mixed integer programming problem
which is further relaxed in order to be efficiently solved.

Golovin et al. [GSMY13] propose a method for pro-
jecting the real valued weight vector to a coarse discrete
set using randomized rounding for on-line learning meth-
ods. The regret analysis show that the accumulated
error during learning is small. In a different line, re-
cent work focused on feature hashing for reducing the
memory footprint which projects the original feature
space to a low dimensional space [WDL+09]. To avoid
collisions and thus deteriorate predictive performance
the dimension should not be decreased a lot. Finally,
Takamatsu [TG14] propose a leverages rounding tech-
nique for compressing the data for learning methods.
While this method compresses efficiently real-valued
data it does not perform any sort of sparsification.

3 A posterior pruning

We consider single-label multi-class classification prob-
lems. Let x ∈ Rd represent an input example ob-
tained with the vector space model [SWY75] and
y ∈ Y = {1, . . . ,K} its associated class label. We
consider here linear classifiers and the One-Versus-Rest
(OVR) approach that is widely used in LSTC tasks ; as
the number of classes may be to large not allowing the
use of uncombined multi-class approaches like the one
proposed by Crammer and Singer [CS02]. The rationale
is that in such extreme cases, OVR can be parallelized
as the binary problems are supposed to be independent,
while the uncombined approaches could not.

To learn the weights vector w, considering the L2

regularized linear classifiers, we solve the following op-
timization problem:

w∗ = arg min
w

1

2
wTw + C

m∑
i=1

e(w; xi, yi)

where e denotes the instantaneous loss. Typical cases
include the hinge loss or its squared version for SVMs.
The ridge solution of this optimization problem is dense
and thus cannot be used in large-scale problems were
one should handle hundreds of thousands of features.
So, we seek a sparse solution close to w∗. One way
would be to force to zero weights that are inferior to a
certain threshold τ (also known as hard thresholding).
But this approach is to aggressive and may deteriorate
the performance for bigger values of τ . Note that there
is a trade-off between the sparsity that we aim to achieve
and the value of the threshold. Bigger values will lead
to very sparse models but may hurt the performance
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Algorithm 1 Hinge thresholding of a linear classifier.

Require: A linear classifier with weight vector w,
thresholds τ and ρ
for j = 1 . . . len(w) do

if |wi| < τ then
if wi < 0 then

wi ← min(0, wi + ρ)
end if
if wi > 0 then

wi ← max(0, wi − ρ)
end if

end if
end for

by removing crucial weights. In order to ease this
technique we propose to apply a softer thresholding
procedure which sparsifies a posteriori a linear classifier
by shrinking linearly the weights inferior to a second
threshold ρ. Algorithm 1 presents the thresholding
procedure. The intuition is that in text categorization
problems while small weight values may correspond to
unimportant features many of them may correspond to
rare features which is the case for the minority classes
containing very few training examples. So, one should
avoid discarding these weights.

4 Experiments

This section describes the experiments we conducted in
order to evaluate the proposed approach. We focused
on large datasets from the text domain and more specif-
ically we used datasets from the LSHTC challenge1.
We present and discuss the results of the proposed ap-
proach in terms of the model sparsity and its predictive
performance.

Model sparsity refers to the number of weights that
equal a value of zero in the underlying linear model and
it is calculated as follows:

s = 1− # of non-zero weights

total # of weights
(1)

4.1 Experimental setup

We evaluated the proposed method in a large-scale sce-
nario in multi-class text classification using the 2011
DMOZ dataset of the LSHTC challenge [PKB+15].
This dataset contains 27875 categories, around 394k
examples and 594k features and it is provided in a pre-
processed format using stop-word removal and stem-

1http://lshtc.iit.demokritos.gr

ming. For each document in the training set the term
frequency is provided along with the assigned label. We
transformed the tf vectors to the tf ∗ idf representa-
tion. We randomly sampled the DMOZ dataset with
increasing number of classes.

Table 1 details the important characteristics of the
sampled datasets. We note that the number of classes
range from 500 to 3000 and the number of features from
68268 to 216545. It has been shown that LSTC collec-
tions generally follow a power law distribution; that is a
large number of classes contain very few number of ex-
amples and most examples are contained in very small
number of classes [BMP+14]. Figure 1 presents the
class distribution for the 3000 classes dataset. In this
case, half of the classes contain less than five examples
(1309 classes).

Table 1: The main characteristics (number of classes,
features and training instances) of the sample datasets
used for the experiments.

Dataset #Classes #Features #Examples

DMOZ-500 500 68268 5818
DMOZ-1000 1000 104768 11123
DMOZ-2000 2000 168153 23346
DMOZ-3000 3000 216545 35533

Figure 1: Class distribution in the DMOZ-3000 dataset.
The minority classes are over represented.
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As mentioned previously we work with linear clas-
sifiers and more specifically we use SVMs as our base
model due to its state-of-the-art performance in text
classification tasks. In all experiments we used the SVM
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Table 2: Number of features kept using χ2 and grid
search. The number in parenthesis represent the per-
centage of features kept from the original dataset.

# Classes # Features
500 13600 (19.92%)
1000 20953 (19.99%)
2000 42038 (24.99%)
3000 43309 (20%)

library LIBLINEAR to train the linear models with the
squared hinge loss function [FCH+08]. We compare the
following approaches on each of the samples datasets:

• L2-SVM: L2-regularized SVM (ridge penalization).

• L1-SVM: L1-regularized SVM (LASSO).

• χ2: Apply the χ2 variable selection technique at the
top of L2-SVM. The χ2 variable selection method
has been proved to be very effective for text classi-
fication [YP97]. It calculates a contingency table
for each term t and class c and then estimates:

χ2(t, c) =
N × (AD − CB)2

(A+ C)× (B +D)× (A+B)× (C +D)

where A is the number of times t and c co-occur,
B is the number of time the t occurs without c, C
is the number of times c occurs without t, D is the
number of times neither c nor t occurs and N is
the total number of documents.

We obtain the final score for a feature (a term in
our case) by averaging its scores across the classes.

To obtain the best number of features for each
datasets, we used a grid-search strategy splitting
each training set in two subsets (70%/30%) and
validating several percentage values for the se-
lected features (from 5% to 70%). Table 2 reports
the number of features that were selected in each
dataset using grid-search.

• Our method dubbed Linear SPARsification
(LiSpar). We perform sparsification of L2-SVM
models according to Algorithm 1. In order to tune
the hyper-parameters τ and ρ we relied on a simple
cross-validation approach.

For each dataset and each algorithm we evaluated
several values of the regularization parameter C ranging
from 1 to 1000 . The performance of each approach is
evaluated in terms of accuracy and Macro F-Measure
(MaF).

Accuracy measures how often a classifier makes the
correct prediction. To compute it, we used the following
formula:

Accuracy =
# of documents well classified

# predictions made

Considering a set of classes Y = {1, . . . ,K}, the MaF
is computed using the following formula:

MaF =
2 ∗MaP ∗MaR

MaP +MaR
(2)

Where the macro precision (MaP) and the macro
recall (MaR) are computed as:

MaP =

∑K
k=1

tpk

tpk+fpk

K
(3)

MaR =

∑K
k=1

tpk

tpk+fnk

K
(4)

Where tpk, fpk and fnk are the true positives, false
positives and false negatives respectively for class k.

As we consider imbalanced datasets, the MaF mea-
sure is interesting since it takes into account both pre-
cision and recall and gives the same importance to
minority and majority classes.

4.2 Results & Discussion

Classification Performance

Figure 2 presents the results in terms of accuracy for all
competing algorithms across all datasets with respect
to the penalty term C ranging from 1 to 1000 that leads
to the best accuracy performance. We first observe that
LiSpar outperforms all its rivals in all datasets. In most
of the cases it has a stable behavior in the performance
with respect to the values of the penalty term. We note
that for low values of C the proposed approach will
prune less values as the weight vector is bounded by
the penalty term thus taking smaller values. On the
other hand for larger values the weights become larger
which leads to smaller percentages of pruning and in
some cases to slighter improvement. LiSpar achieves its
best results for parameter values C in the range of 10
to 100, where the model has not overfit the data and
exhibits good performance before pruning.
L1-SVM which produces very sparse models, hurts

the performance in all cases. This is an expected behav-
ior in large collections where the feature space exceeds
the number of available examples and the features are
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Figure 2: Accuracy for standard SVM (L2-regularized, L2-loss), LiSpar (our method, SVM and threshold), χ2

feature selection and L1-regularized L2-loss SVM considering regularization C ∈ {0.1, 1, 10, 100, 1000} and 500,
1000, 2000, and 3000 classes
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correlated. On the other hand χ2 maintains in most
cases a similar or better performance than L2-SVM,
with the advantage of pruning a large number of unin-
formative features.

Figure 3 presents in the same fashion the comparison
of the algorithms in terms of MaF. We can observe again
a similar trend as LiSpar outperforms all its competing
methods. The improvement of MaF confirms that the
proposed pruning method improves particularly the
classification of minority classes. Figure 4 presents the
number of features that were totally pruned or not
(which means that it remains at least one weight value
for this feature) with respect to the term document
frequency (DF) which is the number of documents a
term appears in. Rare terms will have a small DF

value while terms that are often used will have superior
values.

Interestingly, the features that were completely
pruned correspond to terms that either are rare or
unimportant and thus have small values of DF. For
rare terms this is a particularity for minority classes
which have very few documents. On the other side for
features that were not completely pruned the DF of the
terms is higher and so the corresponding values in the
models tend to be bigger.

Sparsity & Model size

In this section we present the sparsity ratio obtained by
the proposed approach as well as the size of the model
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Figure 3: Macro F-Measure (MaF) for standard SVM (L2-regularized, L2-loss), our method (SVM and threshold),
χ2 feature selection and L1-regularized L2-loss SVM considering regularization C ∈ {0.1, 1, 10, 100, 1000} and
500, 1000, 2000, and 3000 classes
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in the disk. We measure the sparsity of a model using
Equation 1.

For measuring the size of the models we used a repre-
sentation of similar to that of LIBLINEAR for storing
a dataset by keeping only the non-zero values for each
class vector. Specifically, for each class we represent
the vector of weights as follows:

class 1 fa1
: va1

, . . . , fb1 : vb1

. . .

class K fak
: vaK

, . . . , fbK : vbk

where faj and vaj are correspondingly the index and
the value of feature a for the class j.

Table 3 presents the sparsity along with the model
size in Megabytes for all methods across all datasets. We

considered only the results for C= 100 as it usually gives
the best results in accuracy. First we note that L1-SVM
achieves maximum sparsity in all cases leading to very
small models. The proposed approach gives very sparse
models (close to L1-SVM) and the resulting models are
at the worst case 10 times smaller than those produced
by L2-SVM. For larger number of classes, which means
more features, LiSpar gives sparser models. For χ2 as
the algorithm selects informative features before the
learning phase, it ends up with a lower sparsity than
the other methods.

The behavior of LiSpar in terms of sparsity ratio
has a two-fold implication. First, for huge datasets
the models can be efficiently compressed and used in
light embedded computing applications where size is
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Figure 4: Number of features pruned with respect to their document frequency (number of documents they
appear in).
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(b) Not fully pruned features.

Table 3: Sparsity and models size for penalty parameter C= 100.

#Classes L2-SVM LiSpar L1-SVM χ2

500 68.583% (260 Mb) 96.788% (27 Mb) 99.612% (3.1 Mb) 51.708% (72 Mb)
1000 72.479% (723 Mb) 97.062% (77 Mb) 99.701% (7.3 Mb) 57.004% (202 Mb)
2000 75.308% (2200 Mb) 98.228% (148 Mb) 99.769% (18 Mb) 66.072% (674 Mb)
3000 76.415% (4000 Mb) 99.194% (125 Mb) 99.786% (33 Mb) 66.524% (1100 Mb)

critical. Second, and more importantly, it allows to
reduce significantly the prediction time as one can rely
on a sparse scalar product for classifying a new example.

Discussion
In short, these experiments have demonstrated that it
is possible to use an a posteriori method to obtain a
very sparse model while improving the predictive perfor-
mance. Intuitively, by removing small values from the
model, we remove noise and thus small perturbations in
predictions. The proposed method provides better and
faster classifiers by removing the impact of irrelevant
features on the decision.

5 Conclusion and Future Work

In this paper we proposed a simple approach to sparsify
linear models. Whereas most approaches work a priori,
this method works a posteriori and gives very sparse
models while it achieves to improve the performance
for text classification tasks. Compared to other sparse
approaches such as LASSO, this method gives better
results in terms of accuracy and MaF while the level of

sparsity remain close.
For future work several directions will be investigated:

• Find a way to formally obtain the best values of
the threshold’s parameters investigating the loss
occurred during prediction.

• Use LiSpar as a feature selection model, for in-
stance by removing all the features for which all
the weight values equal zero.

• Test the same approach on different kind of
datasets (e.g. images, biological datasets and so
on).
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Éric Gaussier, Michel Burlet, and Yves Den-
neulin. A sparse version of the ridge logistic
regression for large-scale text categorization.
Pattern Recognition Letters, 32(2):101–106,
2011.

[Bac08] Francis R. Bach. Bolasso: Model consistent
lasso estimation through the bootstrap. In

7



Proceedings of the 25th International Con-
ference on Machine Learning, pages 33–40,
2008.

[BBE+03] Jinbo Bi, Kristin Bennett, Mark Embrechts,
Curt Breneman, and Minghu Song. Dimen-
sionality reduction via sparse support vec-
tor machines. Journal Machine Learning
Research, 3:1229–1243, 2003.

[BMP+14] Rohit Babbar, Cornelia Metzig, Ioannis
Partalas, Eric Gaussier, and Massih-Reza
Amini. On power law distributions in large-
scale taxonomies. SIGKDD Explor. Newsl.,
16(1):47–56, September 2014.

[CS02] Koby Crammer and Yoram Singer. On
the algorithmic implementation of multi-
class kernel-based vector machines. Journal
of Machine Learning Research, 2:265–292,
2002.

[FCH+08] Rong-En Fan, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
LIBLINEAR: A library for large linear clas-
sification. Journal of Machine Learning
Research, 9:1871–1874, 2008.

[GE03] Isabelle Guyon and André Elisseeff. An in-
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