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Abstract

This paper presents an approach for improv-
ing the performance of kernel classifiers ap-
plied to object categorization problems. The
approach is based on the use of distributions
centered around each training points, which
are exploited for inter-class invariant image
representation with local invariant features.
Furthermore, we propose an extensive use
of unlabeled images for improving the SVM-
based classifier.

1. Introduction

Facing the growing amount of image databases and
their sizes, the problem of constructing an effective
data structuring scheme arises. One solution is to base
it on an object categorization approach. The aim is
then to classify the given set of images into some pre-
defined categories, based on their image content. This
classification task needs to be inter-class discriminative
as much as possible, while providing good intra-class
invariance to object appearance, lighting conditions,
and background noise.

Generally, in image processing, feature extraction pro-
cedures result in huge sets of features, which can be
hardly processed in their raw representation. Hence,
they are often handled instead using distributions. In
the field of image processing, this is the case when us-
ing invariant descriptors, e.g. SIFT (Lowe, 2004) and
JETs (Schmid & Mohr, 1997), computed at automat-
ically detected interest points of the image. These in-
variant descriptors have recently been used with good
success in object categorization tasks (Opelt et. al.;
Csurka et. al., 2004).
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One solution to the use these distributions in kernel
based methods for this problem is to build a kernel
classifier (such as an SVM) by defining a kernel on
distributions, using for instance the KL-divergence or
other related distances such as the Bhattacharya affin-
ity (Kondor, Jebara, & Howard, 2004). However, such
classification tasks would benefit from a more direct
application of margin-inspired learning criteria.

We thus present here an approach which directly max-
imizes the margin between distributions. Given Gaus-
sian distributions, a large margin classifier can be built
using an alternative formulation of SVMs, already
mentioned by (Vapnik, 2000), but which leads to a
Second Order Cone Programming (SOCP) optimiza-
tion problem (Bhattacharyya, Pannagadatta & Smola,
2004; Bi & Zhang, 2004). Unfortunately, this is a time-
consuming optimization task as compared to quadratic
programming (QP) techniques, considering the effi-
cient SVM-specific algorithms for solving the latter.
We thus propose instead an approximate solution to
this optimization problem, which not only avoids solv-
ing a complicated SOCP optimization problem, but
also presents a nice feed-back for a practitioner.

Using a separate unlabeled large dataset of images,
the algorithm suggests the most valuable locations
which, being considered as new training samples, pro-
vide margin maximization between distributions. The
unlabeled samples which are closest to the latter can
then be used in an active learning fashion in order to
enhance the performance of the classifier.

There are two major innovative aspects presented in
this paper. Firstly, a kernel method for classifying dis-
tributions is proposed in Sections 2 and 3. Secondly,
we explore the use of kernel methods for the challeng-
ing problem of improving object categorization models
by introducing unlabeled data points into the train-
ing set (Section 4). An experimental setting for the
problem of object categorization is then presented in
Section 5.
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2. Kernel Classifier for Distributions

The margin maximization principle is based on results
from the Statistical Learning Theory (Vapnik, 2000),
and provides a way to minimize the complexity of the
model by bounding the VC-dimension of the modeling
function.

Intuitively, the same approach can be used for other
learning tasks. We thus now present a definition of
margin for distributions, and provide a way for con-
structing learning algorithms based on this margin.
The proof of the margin maximization principle for
the considered problem is out of the scope of this pa-
per. The general solution to the problem would include
introducing functional data input spaces and corre-
sponding generalization bounds.

Suppose one is given a training set of L probability
distribution functions p(x |x i,r i), centered at x i and
specified by some parameters r i. We also associate
some label yi for each distribution. These are {+1, -
1} for binary classification problem.

2.1. Linear Decision Functions

Consider the set of linear decision functions {f =
wx + b}, where w is a weight vector, and b is a con-
stant threshold. The actual decision is usually taken
according to sign(f).

Consider the optimization problem:

min
1

2
‖w‖2

+ C

L∑
i=1

ξi (1)

subject to the following constraints:
∫

yi(wx+b)≥1

p(x|xi, ri)dx ≥ η − ξi, i = 1, ...L, (2)

ξi ≥ 0, i = 1, ...L. (3)

The first constraint corresponds to the fact that η-
quantile of the distribution lies outside the margin, not
taking into account the slack variable ξi. These slack
variables are equivalent to the analogue trick done in
soft margin formulation of the Support Vector Ma-
chine.

2.2. Iterative Solution

The general approach for solving the optimization
problem (1)-(3) is to apply an iterative procedure in
order to obtain an approximate solution. This type of
optimization approach has already been applied, for

instance in (Bi & Zhang, 2004). Note however that
the nature of SVM-related methods is that they try
to find Support Vectors, i.e. samples which lie clos-
est to the discriminative surface. Thus, when discrim-
inating some subsets S(x i), constraints of the type
max

x∈S(xi)
[yi(wx + b)] ≥ 1 − ξi can be used. See for in-

stance (Graepel & Herbrich, 2003; Fung, Mangasar-
ian & Shavlik, 2002; Bhattacharyya, Pannagadatta &
Smola, 2004) where such a solution was applied for
different types of S(x i). Solving problems with this
type of constraints is roughly equivalent to the task of
finding the “optimal” or “effective” sample from the
subset.

A similar approach holds for the case of distributions.
There exists a representation of the hyper-plane in
terms of some samples x

∗
i which coincide with the so-

lution of the problem (1)-(3). We propose here a sim-
ple 2-step method to obtain an approximate solution
to (1)-(3).

2.3. Hyper-plane Projection Method

From now on, let us consider the kernelized version of
the proposed algorithm. Let K(., .) be a reproducing
positive definite kernel. Let some (w 0, b0) define the
optimal separating hyper-plane in the feature space
induced by K(., .) for the training set of means and
targets {x i, yi}. Actually, this is given by the set of La-
grange multipliers {αi}, obtained by solving the stan-
dard SVM optimization. The proposed scheme is as
follows:

1. Solve a standard SVM optimization problem for
the means x i. The obtained solution is (w 0, b0).

2. Calculate the projections of p(x |x i, r i) on w0.
This results in a simple 1-D optimization prob-
lem.

3. Solve the 1-D problem according to the given
value of η.

4. Compute the inverse projection. This results in a
modified training set x

∗
i .

5. Solve a standard SVM optimization problem us-
ing the original and the modified samples x

∗
i .

Detailed explanation of the projection steps is pre-
sented below.

2.4. Direct Projection

Consider the following averages in the feature space,
which provide the means and variances of some 1-D
distribution π(χ|µj , σj).
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µj = E[w0Φ(xj) + b0] =
L∑

i=1

yiαi

∫

X

K(xj ,xi)p(x|xi, ri)dx + b0, (4)

σ2
j = E[(w0Φ(xj) − µj)

2] =
L∑

i,k=1

yiykαiαk∫

X2

K(xi,xk)p(x|xi, ri)p(x′|xk, rk)dxdx′ − µ2
j .

(5)

These 1-D pdfs correspond to p(x |x j ,r j) being pro-
jected to the 1-D subspace defined by w 0. Given these
projections, the constraints (2) can be (currently) sat-
isfied by taking the χj in 1-D space such that

∫

yjf(x)≥χj

π(χ|µj , σj)dχ ≥ η. (6)

It can be solved easily and results in some threshold
constant cj

η such that χj = f(x∗
j ) = cj

η.

2.5. Inverse Projection

Given the set of χj , we now need to find an inverse pro-
jection of χj back into the feature space. Obviously,
this transformation is not unique and some criterion
is required in order to define it more precisely. At this
step, it is hard to control the margin, but the con-
straint (2) can still be satisfied. One would thus like
to find x

∗
j such that the inequality in (2) holds (or

is violated as slightly as possible) over variations in
w and b. For the majority of distributions which are
used in real-life problems, the following criterion can
be used in order to obtain the inverse projection x

∗
j of

the χj :

x
∗
j = arg max

x

p(x|xj , rj),

s.t. f(x) = cj
η

(7)

A useful intuition behind this criterion is as follows: if
x
∗
j is fixed at the maximum of p(x |x j ,r j) at the sur-

face f(x) = cj
η , then the integral in the left part of (2)

is less likely to change. Problem (7) is a constrained
optimization problem, which needs to be solved. It re-
sults in the desired inverse projections x

∗
j which form

the new training set. A standard SVM solution for the
obtained training set then approximates the solution
of the initial problem (1).

3. Discrimination of Gaussian

Distributions

For the particular case of Gaussian distributions,
p(x |x i,r i) = N (x i,Σi), the presented scheme can be
applied easily. The direct projection step requires inte-
grating Gaussians which is feasible in closed form and
is not presented here. Afterward, the inverse projec-
tion can be carried out by solving the following opti-
mization problem:

x
∗
j = arg min

x

(x− xj)
T Σ−1

j (x− xj),

s.t.
L∑

i=1

yiαi exp(−δ(x− xi)
2) + b = cj

η.
(8)

This problem has the following approximate analytical
solution:

x
∗
j = (I + 2γδcj

ηΣi)
−1

(xj + 2γδ
L∑

i=1

yiαi exp(−δ(xj − xi)
2)Σixi),

(9)

for some positive constant γ, which has to be chosen
in order to satisfy the constraint in (8). The com-
putations are significantly simplified, since for high-
dimensional input data diagonal covariance matrices
are often used.

4. Partly Labelled Data

We will use the unlabelled training data in the Ac-
tive Learning style. Concerning SVMs, Active Lean-
ing approaches exploit margin properties to optimize
the version space by including respective queries from
the pool of data (Tong, 2001). One of the surprising
properties observed in SVM Active Learning, is that
an SVM, trained on the algorithmically chosen pat-
terns outperforms SVM, trained on the whole dataset.
It empirically justifies the approaches aimed at opti-
mizing the training set by selecting the appropriate
patterns for training.

To make use of unlabelled data, we use an equation for
modifying the means (9). Instead of substituting the
original training sample x j with the suggested “vir-
tual” sample x

∗
j , we will take the real-life unlabelled

sample, closest to x
∗
j . This may appear to be the time-

consuming step of the algorithm. However, since data
are presented as distributions, simple comparison of
the corresponding probabilities can be considered.

Note that opposite to the common Active Learning
scheme, when one sample is added to the training set
each time, we add one sample for every obtained Sup-
port Vector. These samples have to be labelled then.
To avoid user participation, the cooresponding labels
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of the “parent” samples x j can be assigned. The la-
belling can be reconsidered for the samples which both
obtain upper bound C weights and still classified incor-
rectly by the re-trained SVM. Otherwise, these sam-
ples can be neglected and the samples x

∗
j , originally

suggested by (9), can be taken.

5. Object Categorization

Local invariant image descriptors provide reasonable
performance for object detection and categorization
tasks (Lowe, 2004; Schmid & Mohr, 1997). It is ev-
ident to try to benefit from both invariant features
and a powerful classifier such as an SVM. A number
of approaches has been proposed for the latter (Wall-
raven, Caputo & Graf, 2003; Csurka et. al., 2004).
The common idea is to define some kernel for the sets
of features.

Preliminary experimental results of (Eichhorn &
Chapelle, 2004) suggest the following choice of the ap-
proach, which combines SIFT features (Lowe, 2004),
modeled with Gaussian distributions, and a Bhat-
tacharya kernel, which can be obtained in the closed
form for this type of distributions (Kondor, Jebara, &
Howard, 2004). However, with the growing number of
dimension, the influence of the variance vanishes, and
the Bhattacharya kernel for two Gaussians converges
to the kernel, which mainly depends on the distance
between the respective means. Therefore, it is still
partly subject to the curse of dimensionality problem.
Therefore, the proposed direct margin maximization
approach is a promising alternative. These considera-
tions will be verified experimentally.

The expected results of the ongoing experiments rep-
resent the decrease of the testing error while adding
the samples from the unlabelled set according to the
proposed method.

6. Conclusions

We presented an approach to improve the kernel-based
solutions for object categorization problems. The
method takes advantage of the direct margin maxi-
mization between distributions. These distributions
are used to model the SIFT features, extracted from
the images. Currently, SIFT features are known to be
one the most successful features used for object cat-
egorization. Unlabelled data are used in the Active
Learning manner. The samples are added into the
training set according to the suggested update rule.

The advantage of the proposed scheme is a possibil-
ity to obtain a nice feed-back while constructing a

classifier for object categories. The scheme also gives
promising possibilities for feature selection. Currently,
SIFT features in kernel classifiers are used ad-hoc for
solving object categorization problems. The presented
approach provides better understanding of SIFT fea-
tures usage.

The expected experimental results are aimed at illus-
trating the efficiency of the approach. The described
experimental setup will be completed throughly and
the obtained results will be presented at the workshop.
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