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Abstract

In this paper we investigate techniques for
semi-supervised learning that split their un-
supervised and supervised components —
that is, an initial unsupervised phase is fol-
lowed by a supervised learning phase. We
first analyze the relative value of labeled and
unlabeled data. We then present methods
that perform “split” semi-supervised learning
and show promising empirical results.

1. Introduction

Many techniques for semi-supervised learning are
based on principles that apply without distinction to
labeled and unlabeled data (maximum likelihood, pos-
terior expected loss, maximum entropy). Often the
idea is to process both kinds of data either together or
in close collaboration, under the guidance of one gen-
eral principle. However one can conceive a different
strategy, where labeled and unlabeled data contribute
in distinct ways to the learning procedure. An ex-
ample of this “split” strategy is the recent work on
learning Riemannian manifolds, where manifolds are
detected only with the unlabeled data, and then used
in a transductive method in a second step (Belkin &
Niyogi, 2004). As stated by Ando and Zhang (2005),
“the basic idea is to learn good functional structures
using the unlabeled data” and to employ the resulting
structures in a later stage.

At first it might seem that labeled and unlabeled data
should always be given the same status: in the absence
of modeling errors, both kinds of data are valuable in
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reducing classification error (Castelli & Cover, 1996).
However this intuitive argument breaks in the presence
of modeling errors, as in this case unlabeled data may
have a deleterious effect on performance — Section 2
presents a brief analysis on the relative value of labeled
and unlabeled data in generative classifiers. Thus in
practice labeled and unlabeled data have different ef-
fects, and it is advisable to consider strategies that do
not treat them equally.

The goal of this paper is to test the possibly simplest
way to “split” labeled and unlabeled learning compo-
nents. We wish to explore how far one can go by pro-
cessing attributes with a well-known unlabeled method
(PCA/ICA) and using the transformed attributes in a
supervised fashion (here by SVMs). In Sections 3 and
4 we present basic concepts and experiments on this
strategy.

2. The value of labeled and unlabeled

data

The goal in this paper is to classify an incoming vector
of observables X. Each instantiation of X is a sample.
There exists a class variable C that takes values in a set
of labels. To simplify the discussion, we assume that
C is a binary variable with values c′ and c′′. We want
to build classifiers that receive a sample x and output
a value for C. We assume 0-1 loss, hence our objective
is to minimize the probability of classification errors.
If we knew exactly the joint distribution P (C,X), the
optimal rule would be to select the label with highest
posterior probability (Devroye et al., 1996).

A classifier is to be built using samples in a database.
The samples in the database are either labeled or un-
labeled; we assume that a sample is unlabeled with
probability (1 − λ). We also assume that the same
distribution P (X|C) generates both kinds of samples.
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When a sample is unlabeled, its distribution is a mix-
ture ηp(X|c′) + (1 − η)p(X|c′′), where η = p(c′). We
assume that such mixtures are identifiable (Redner &
Walker, 1984).

Consider that a (parametric) generative model
P (C,X|θ) is adopted as a representation for the joint
probability P (C,X). Two guidelines often used to gen-

erate estimates θ̂ are maximum likelihood and max-
imization of posterior loss (DeGroot, 1970). In re-
cent years a number of authors has explored gen-
erative models and maximum likelihood (or variants
thereof) in semi-supervised learning, with promising
results (Baluja, 1998; Bruce, 2001; Miller & Uyar,
1996; Nigam et al., 2000). Theoretical results show
that labeled and unlabeled data contribute to a re-
duction in risk, even though they may do so at dif-
ferent rates, whenever modeling assumptions are cor-
rect — that is, when P (C,X|θ) is equal to P (C,X)
for some θ (Castelli & Cover, 1995; Castelli & Cover,
1996; Ratsaby & Venkatesh, 1995).

However, these positive findings on generative classi-
fiers have been contrasted with a number of exam-
ples where unlabeled data has led to some degrada-
tion in classification error (Grandvalet & Bengio, 2004;
Cozman & Cohen, 2002; Shahshahani & Landgrebe,
1994). Here “degradation” means that the classifica-
tion error obtained with labeled and unlabeled data
is larger than the classification error obtained just
with labeled data. Recently an asymptotic analysis of
semi-supervised learning has focused on the effect of
modeling errors on performance degradation in semi-
supervised learning (Cozman et al., 2003). The anal-
ysis can be summarized as follows. In the presence
of modeling errors, asymptotic estimates obtained by
maximum likelihood are affected by the probability λ:
estimates change as λ moves from the supervised sit-
uation (λ = 1) to the unsupervised limit (λ → 0).
Suppose one starts with labeled data and gradually
adds unlabeled data. The effect is a gradual change
in λ and a corresponding gradual change in estimates,
from their supervised starting point in the direction of
an unsupervised limit. This explains why in practice
one may find that taking larger and larger amounts of
unlabeled data changes not only the variance of esti-
mates but also their average behavior. Now, is the su-
pervised starting point better than the unsupervised
limit? Intuitively one would expect labeled data to
provide more guidance to a learning procedure, thus
producing better asymptotic estimates than the unla-
beled data. This rationale is discussed in more detail
in Appendix A.

The possibility of degradation in generative classi-

fiers suggests that we should investigate more the per-
formance of diagnostic classifiers for semi-supervised
learning. Nevertheless, as purely diagnostic classi-
fiers are not affected by unlabeled data (Zhang &
Oles, 2000), is not trivial to design the inclusion
of unlabeled data into the process. There must be
some “principle” connecting the probabilities over C
and X, and the probabilities over X. There is a
great diversity of successful solutions, ranging from
maximum entropy solutions (Grandvalet & Bengio,
2004; Jaakkola et al., 1999) to transductive methods
(Joachims, 1999).1 Hence it is relatively hard to select
the best diagnostic approach to unlabeled data, given
the number of different strategies in the literature.

3. “Split” learning

The previous section presented some of the challenges
in semi-supervised learning. On the one hand, it seems
generally difficult to guarantee that generative classi-
fiers will be immune to performance degradation. On
the other hand, it is not easy to modify diagnostic
classifiers in a coherent fashion so as to make them
“sensitive” to unlabeled data.

Now, unlabeled data can be an extremely valuable
source of insight on modeling assumptions. Unla-
beled data may be used to verify modeling assump-
tions in generative classifiers (as proposed by Cohen
et al. (2004)); or unlabeled data may be used to es-
tablish modeling assumptions prior to actual use of a
learning method. Ando and Zhang (2005) refer to this
latter strategy as “structural” learning, as it looks at
structural aspects of the learning situation using the
unlabeled data. A similar idea on manifolds is pro-
posed by Belkin and Niyogi (2004). We consider in
this paper a particular case where an initial unsuper-
vised phase is followed by a fully supervised, diagnostic
phase; we refer to this as “split” learning.

Our purpose is to explore the performance of a rather
simple strategy that can be applied without any mod-
ification on existing methods. We consider that the
first unsupervised phase focuses on the transforma-
tion of attributes using “classic” methods such as
PCA (Hastie et al., 2003) and ICA (Hyvarinen, 1999),
while the second supervised phase uses SVMs (Vapnik,
1998). Similar ideas have been applied previously by

1A few empirical results suggest that performance
degradation may occur also in diagnostic paradigms, but
no in-depth analysis has been conducted — for example,
Zhang and Oles (2000) discuss performance degradation
with transductive SVMs, while Ghani (2002) describes ex-
periments where the same phenomenon occurred with co-
training.
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L’Heureux et al. (2004).

“Split” learning has a few advantages. A great deal of
unlabeled data can be used in an exploratory first step,
and then a classifier can be quickly learned with the
available labeled samples. The supervised phase can
use either a generative or diagnostic method without
any difficulty. Conclusions obtained with unlabeled
data can be transferred to a variety of supervised clas-
sifiers.

To a great extent, the goal of this paper is to test
the simplest conceivable scheme for “split” learning.
The resulting procedure may be criticized as too sim-
plistic and prone to elementary mistakes (for example,
PCA may collapse relevant clusters together). How-
ever, we note that a similar criticism can be leveled
against the successful Naive Bayes classifier as adopt-
ing unrealistic assumptions. The key motivation here
is to explore a method that can be quickly employed
by any practitioner with existing tools at hand. The
next section shows that the PCA/SVM combination is
quite promising in practice.

4. Experiments

The idea here is to use PCA or ICA to transform the
attributes in a compact and effective manner, and then
to use SVMs in a supervised fashion with the trans-
formed attributes. Both PCA and ICA try to use
training data to find a matrix T that transforms this
data to a different space where the features are sta-
tistically independent. Although PCA and ICA have
the same objective, they differ in their assumptions:
PCA assumes that mean and variance are sufficient
statistics, thus in fact assuming Gaussianity; ICA does
not assumes the data to be Gaussian and finds a lin-
ear transformation such that statistical independence
over features is maximized. While PCA is well suited
as a method to reduce the number of attributes in a
problem, ICA is less suited for this task (Hyvarinen,
1999).

In our experiments we have used the PCA implemen-
tation in MATLAB R13 and the ICA implementa-
tion in FastICA (Hyvarinen & Oja, 1997). The SVM
classifiers are learned by the MATLAB Support Vector

Machine Toolbox (Cawley, 2000). We run experi-
ments on the 20 Newsgroups database (tokenized with
the Rainbow package (McCallum, 1996)) and with
three real databases from the UCI Database Repos-
itory (Blake & Merz, 1998): Adult, Spam and Isolet

databases. In all experiments the unlabeled samples
were chosen randomly.

We studied six different cases, combining SVM as clas-

sifier and PCA or ICA for feature transformations and
dimensionality reduction. We have

• PCA Lab: We executed PCA only with the la-
beled data; then we selected a number of princi-
pal components (PCs), ranked by the respective
eigenvalues, so the dimensionality of the labeled
database was reduced. We then learned an SVM
with the transformed labeled database.

• PCA LUL: The same procedure in the previous
case, but using the partially labeled database to
execute PCA. The labeled data, transformed by
PCA, was used to learn a supervised SVM.

• ICA Lab: We executed ICA only with the la-
beled data. Then we selected a number of inde-
pendent components (ICs), ranked by the respec-
tive values of the inverse of the absolute kurtosis2,
so the dimensionality of the labeled database was
reduced. We then learned an SVM with the trans-
formed labeled database.

• ICA LUL: The same procedures in the previous
case, but using the partially labeled database to
execute ICA. The labeled data, transformed by
ICA, was used to learn a supervised SVM.

• ICA-all Lab: The same procedure in the “ICA
Lab” case, but without dimensionality reduction
in the labeled database.

• ICA-all LUL: The same procedures in the “ICA
LUL” case, but without dimensionality reduction
in the labeled database.

The SVMs were learned with RBF (radial basis func-

tion) kernels: K(x, x′) = e−‖x−x′‖2/2σ2

.

Each point in the graphs presented later represents
the average performance of SVMs by 10-fold cross val-
idation. The dimension reduction techniques are sepa-
rately applied within each fold of cross-validation. The
vertical axis gives us the average increase of perfor-
mance over the average performance of a supervised
SVM, i.e., taking only the labeled data in their orig-
inal feature space to train the classifier. For exam-
ple, if we have 5% in the vertical axis, we just have
the performance of the supervised SVM plus 5%. The
horizontal axis contains the number of selected com-
ponents to each point of the curves (not valid to the
“ICA-all Lab” and “ICA-all LUL” cases).

2The kurtosis of a database is computed by kurt(x) =
E{x4} − 3(E{x2})2. If p(x) is a Gaussian distribution,
kurt(x) is equal to 3.
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We emphasize that the 0% in the vertical axis denotes
the performance of an SVM learned with the few la-
beled samples selected for each experiment. We refer
to these SVMs as “totally supervised” SVMs.

4.1. Results with the 20 Newsgroups database

To perform experiments with the 20 Newsgroups

database, we considered the messages in the
rec.autos and rec.motorcycles directories. We
must classify a given message drawn from one of these
directories as a message about autos or motorcycles.
Using the Rainbow package, we tokenized these direc-
tories and limited the number of features to 1250.

We considered 40 labeled samples in all experiments
with this database, and 100, 500 and 1000 unlabeled
data. The measured average kurtosis of this database
was (439.58± 544.72).

Figure 1 shows the results of “split” learning in the
20 Newsgroups database. The inclusion of unlabeled
data to perform PCA improved performance signifi-
cantly. We could achieve up to 25% improvements
over the “totally supervised” SVM, using just the 5
first PCs (less than 1% of the original number of fea-
tures – 1250). Moreover, results seem to be similar to
those obtained through the structural learning method
by Ando and Zhang (2005).

Learning ICA from only the labeled data and not per-
forming dimensional reduction (curve “ICA-all Lab”
from Figure 1) was successful to achieve a better per-
formance SVM, although in this case we had more
features than PCA case. Anyway, PCA was better
to incorporate unlabeled data to produce indirectly
semi-supervised SVMs, moreover reducing drastically
the dimension of the labeled data.

4.2. Results with the Spam database

The Spam database contains 56 features. We consid-
ered only 22 labeled data in all experiment, and took
100, 500 and 3228 unlabeled samples. The measured
average kurtosis of this database was (218.93±326.31).

Figure 2 shows the results of “split” learning with the
Spam database. Performing PCA and dimensional-
ity reduction prior to the learning of the supervised
SVM increased the average performance of this classi-
fier. Adding unlabeled data to perform PCA enhanced
even more the performance of the SVM. For exam-
ple, the inclusion of 100 unlabeled instances to exe-
cute PCA (top-left graph in Figure 2) increased the
performance of the SVM up to 15% with only the first
PC, when compared to the “totally supervised” SVM.
While PCA was quite successful, ICA did not present
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Figure 1. Results obtained with the 20 Newsgroups

database. Top-left graph: 40 labeled instances plus 100
unlabeled ones. The performance of the “totally super-
vised” SVM was (52.82 ± 3.30)%. Right graph: 40 labeled
instances plus 500 unlabeled ones. The performance of the
“totally supervised” SVM was (52.57 ± 2.60)%. Bottom-

left graph: 40 labeled instances plus 1000 unlabeled ones.
The performance of the “totally supervised” SVM was
(55.27 ± 3.22)%.

positive results.

4.3. Results with the Adult database

The Adult database has 14 features. We used only
20 labeled data in all experiment, and 100, 1000 and
10000 unlabeled samples. The measured average kur-
tosis of this database was (9.22 ± 19.85).

Figure 3 shows the results with the Adult database.
Including unlabeled data to perform PCA led to an in-
crease of performance when considering just the first
PCs, although in some cases the effect of the addi-
tional unlabeled data was deleterious to the perfor-
mance of the SVM, in comparison to the case when
performing PCA only with the labeled data. The in-
clusion of 10000 unlabeled instances to execute PCA
(bottom-left graph in Figure 3) increased the SVM
performance up to almost 10% with only the first PC.
ICA was again unsuccesful (even though including un-
labeled data to execute ICA improved the SVM per-
formance when compared to the case we used only the
labeled data to perform ICA – curves “ICA Lab” vs.
“ICA LUL”).

4.4. Results with the Isolet database

The Isolet database contains 617 features. We fixed
20 labeled samples in all experiments, and 100, 500
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Figure 2. Results obtained with the Spam database. Top-

left graph: 22 labeled instances plus 100 unlabeled ones.
The performance of the “totally supervised” SVM was
(69.79 ± 6.15)%. Right graph: 22 labeled instances plus
500 unlabeled ones. The performance of the “totally super-
vised” SVM was (70.22±6.36)%. Bottom-left graph: 22 la-
beled instances plus 3228 unlabeled ones. The performance
of the “totally supervised” SVM was (71.32 ± 5.69)%.

and 1000 unlabeled samples. The measured average
kurtosis of this database was (4.43± 15.16).

Figure 4 shows the results we obtained using indirectly
semi-supervised SVM and the Isolet database. The
inclusion of unlabeled data to execute PCA seems not
to cause any effect in the learning of the SVM, as
we observe comparing “PCA Lab” and “PCA LUL”
curves. ICA was more efficient than PCA only when
the number of ICs was higher than 11, without in-
cluding any unlabeled data (“ICA Lab” case).

5. Discussion

The vagaries of semi-supervised learning suggest that
a valid strategy is to always start with a supervised
classifier (learned with labeled data only). This “base-
line” classifier can then be compared to other semi-
supervised classifiers. Whenever modeling assump-
tions seem inaccurate, the use of unlabeled data as
an exploratory tool is a profitable decision. “Split”
learning represents an extreme alternative where the
unlabeled data is employed as a modeling tool while
the labeled data is used for supervised learning.

Our experiments suggest that, despite its startling sim-
plicity, “split” learning with PCA+SVM is quite effec-
tive; in fact it seems to be as effective as much more
complex proposals in the literature (e.g., structural
learning (Ando & Zhang, 2005)). Experiments show
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Figure 3. Results obtained with the Adult database. Top-

left graph: 20 labeled instances plus 100 unlabeled ones.
The performance of the “totally supervised” SVM was
(62.41 ± 6.24)%. Right graph: 20 labeled instances plus
1000 unlabeled ones. The performance of the “totally su-
pervised” SVM was (64.17 ± 4.81)%. Bottom-left graph:
20 labeled instances plus 10000 unlabeled ones. The per-
formance of the “totally supervised” SVM was (62.72 ±
5.62)%.

that PCA is quite effective in “rewriting” attributes
in a compact and profitable manner. In those practi-
cal problems where dimensional reduction is desirable
(for instance, when the number of attributes is high),
the use of our simple “split” learning method is natu-
ral and promising. Once the attributes are rewritten
in a compact manner, thus conveying the content of
the unlabeled data, the transformed attributes can be
quickly used to train other supervised classifiers with
few low dimensional labeled samples, without return-
ing to the unlabeled data. Experiments such as the 20
Newsgroups database show that in some situations we
may be able to employ less than 1% of the original
number of attributes and still improve performance.
We emphasize that in this and in other experiments
the “quality” of the PCA reduction is greatly improved
by the presence of unlabeled data.

An interesting observation is that databases that com-
ply less with the Gaussian assumptions of PCA (mea-
sured by the average kurtosis) tend to benefit more
significantly from unlabeled data. When the database
is close to the Gaussianity assumption, a few labeled
samples are enough to produce a satisfactory tranfor-
mation for attributes. When the database is not Gaus-
sian at all, PCA needs more samples to work with —
exactly the samples provided by the unlabeled data.
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Figure 4. Results obtained with the Isolet database. Top-

left graph: 20 labeled instances plus 100 unlabeled ones.
The performance of the “totally supervised” SVM was
(54.02 ± 6.61)%. Right graph: 20 labeled instances plus
500 unlabeled ones. The performance of the “totally super-
vised” SVM was (52.43±4.86)%. Bottom-left graph: 20 la-
beled instances plus 1000 unlabeled ones. The performance
of the “totally supervised” SVM was (50.06 ± 4.25)%.

We note that ICA was not effective in improving per-
formance. Future work should investigate why PCA
and ICA are so different in the present context.

We also leave for future work the search for more so-
phisticated (but hopefully still simple) methods that
transform attributes taking into consideration the sec-
ond supervised step.
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A. Labeled and unlabeled data in

generative classifiers

In this appendix we return to a question stated in Sec-
tion 2: in generative classifiers, is the supervised start-
ing point better than the unsupervised limit of perfor-
mance? One would expect labeled data to have more
useful content than unlabeled data. But even a simple
example shows that the matter is not straightforward
at all. Take two attributes X and Y with Gaussian dis-

tributions conditional on the class variable C; suppose
that a Naive Bayes classifier is learned, but one of the
Gaussian distributions displays a correlation between
X and Y . Depending on the value of this correlation,
the asymptotic behavior for λ = 1 can be better or
worse than for λ → 0 (details can be found in (Cohen
et al., 2004) and (Cozman et al., 2003)). Thus labeled
data do not always produce an asymptotic classifier
with better performance than unlabeled data.

Still, is there anything that can be said about the
(intuitively plausible) more valuable status of labeled
data? This is a key question for generative semi-
supervised learning: performance degradation occurs
exactly when the supervised starting point is better
than the limiting unsupervised point. In the remain-
der of this appendix we explore this theme, focusing
on maximum likelihood generative methods.

We base our argument using bounds on the
classification error. For a given θ, define
EKL(θ) = E[log(P (C|X) /P (C|X, θ))] to be the
expected Kullback-Leibler divergence between the
“true” posterior and the estimated posterior (Cover
& Thomas, 1991). Smaller expected Kullback-Leibler
divergence typically leads to smaller classification error
— in the sense that expected Kullback-Leibler diver-
gence bounds the classification error (Garg & Roth,
2001; Cover & Thomas, 1991). We now show that the
expected Kullback-Leibler divergence for θ∗u is larger
than for θ∗l , therefore the bound on the classification
error with labeled data is smaller than that with un-
labeled data.

Unsupervised learning asymptotically takes us to
θ∗u = argmaxθ Du(θ), where Du(θ) = E[log P (X|θ)].
Supervised learning instead takes us to θ∗l =
arg maxθ Dl(θ), where Dl(θ) = E[log P (C,X|θ)].
Thus Dl(θ) = Dt(θ) + Du(θ), where Dt(θ) =
E[log P (C|X, θ)]. Define θ∗t = argmaxθ Dt(θ).
Clearly Dt(θ

∗
u) ≤ Dt(θ

∗
t ); simple manipulations lead

to

EKL(θ∗u) ≥ EKL(θ∗t ), (1)

In terms of expected Kullback-Leibler divergence, we
have:

• Unlabeled data asymptotically yields EKL(θ∗u)
where θ∗u = arg maxθ Du(θ).

• Labeled data asymptotically yields EKL(θ∗l )
where θ∗l = arg maxθ Dt(θ) + Du(θ).

• Direct minimization of expected Kullback-
Leibler divergence yields EKL(θ∗t ) where θ∗t =
arg maxθ Dt(θ).
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Note the following pattern: while unlabeled data pro-
duces an estimate by maximizing Du(θ) (a quantity in
principle unrelated to the expected Kullback-Leibler
divergence), labeled data produces an estimate by
maximizing a sum of Du(θ) with the quantity of di-
rect interest (Dt(θ)).

Now return to Expression (1). If equality is attained
in this expression, θ∗u maximizes Dt(θ) and Du(θ) si-
multaneously, and consequently θ∗u = θ∗l where θ∗l =
arg maxθ Dl(θ). Thus equality in Expression (1) pro-
duces a situation where labeled and unlabeled data
converge to the same point and have the same asymp-
totic value. The more interesting case where θ∗u 6= θ∗l
thus implies that Expression (1) is a strict inequality:

EKL(θ∗u) > EKL(θ∗t ). (2)

Thus θ∗u is not a maximum of Dt(θ). We make the
additional assumption that Dt(θ

∗
u) is not a stationary

point of Dt(θ).

At θ∗u, the derivative of Dl(θ) is equal to the deriva-
tive of Dt(θ) (as Du(θ) attains a maximum at θ∗u). The
maximization of Dl(θ) cannot have θ∗u as a maximizing
point, and instead will necessarily move in the direc-
tion of higher Dt(θ). Hence Dl(θ

∗
u) is smaller than

Dt(θ
∗
l ), and EKL(θ∗u) > EKL(θ∗l ). Consequently,

the bound on the classification error is tighter with
labeled data then it is with unlabeled data, suggesting
that supervised learning should typically lead to better
asymptotic behavior than unsupervised learning.

Obviously the analysis cannot state that labeled data
are always superior to unlabeled data — this is not
true, as illustrated by the Gaussian example. What
the previous arguments show is that labeled data are
typically more valuable than unlabeled data in asymp-
totically reducing a bound on classification error. Thus
if the asymptotic behavior of labeled data is different
from the asymptotic behavior of unlabeled data, we
should expect the first to be better than the second
with respect to classification. These are exactly the
situations where unlabeled data may degrade the per-
formance of generative semi-supervised learning.

Asymptotic analysis can provide insight into complex
phenomena, but finite sample effects are also impor-
tant. In practice one may have very little labeled data,
and the estimates θ̂ from labeled data may be so poor
that the addition of unlabeled data is a positive move.
This should explain at least partially the success of
generative semi-supervised learning in problems with
many attributes, because in those settings the number
of labeled samples is often insufficient to obtain good
estimates (due to the large number of parameters in-
volved). Text classification is an important problem

where many attributes are often available, and where
generative semi-supervised learning has been success-
ful (Nigam et al., 2000).
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