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Abstract  

We experimentally compare performances of 
five different methods for solving semi-
supervised learning tasks proposed recently. In 
particular, we compare the Low Density 
Separation (LDS) algorithm with the original 
Consistency Method (CM) and Gaussian 
Random Fields Model (GRFM) as well as with 
the applications of the latter two to the new 
input’s representation obtained by the graph-
distance derived kernel. The experiments show 
that the efficiency of the method depends 
primarily upon whether one solves two- or multi-
class recognition problem. For two-class 
problems, as long as the cluster assumption of 
data holds, LDS algorithm provides slightly 
smaller error, while for the multi-class semi-
supervised tasks both CM and GRFM show 
superior performances. For the two-class 
problems without cluster structure of the data 
LDS algorithm is superior to the other ones used 
here. 

1.  Introduction 

The two most popular machine learning groups are the so-
called supervised and unsupervised learning methods. In 
the former a learning machine attempts to learn the input-
output relationship (dependency or function) f(x) by using 
a training data set X = {[x(i), y(i)] ∈ ℜm × ℜ, i = 1,...,n} 
consisting of n pairs (x1, y1), (x2, y2), …, (xn, yn), where 
the inputs x are m-dimensional vectors x ∈ ℜ m and the 
labels (or system responses) y ∈ ℜ are continuous values 
for regression tasks and discrete (e.g., Boolean) for 
classification problems. In the unsupervised learning 
there are only raw data xi ∈ ℜ m without the 
corresponding labels yi (i.e., there is a ‘no-teacher’ in a 
shape of labels). The most popular algorithms belonging 
to this group are various clustering and (principal or 

independent) component analysis routines. However, 
today we are frequently facing instances in which the 
learning is characterized by the presence of (usually) a 
small percentage of labeled data only. In this novel 
setting, the learning problem is to predict the label (or the 
belonging to some class) of the unlabeled data points. 
This task belongs to the so-called semi-supervised or 
transductive inference problems. The main reason for an 
appearance of the unlabeled data points is usually 
expensive, difficult and slow process of obtaining labeled 
data. Thus, labeling brings the costs and often it is not 
feasible.  

————— 
Appearing in Proc. of the 22st  ICML Workshop on 

Learning with Partially Classified Training Data, Bonn, 
Germany, August 2005, Copyright by the author(s). 

Recently several approaches to the semi-supervised 
learning were proposed. Here, we compare the LDS 
algorithm as given in Chapelle and Zien (2005), with the 
CM as presented in Zhou et al. (2004), and with the 
GRFM as introduced in Zhu et al. (2003). Benchmarking 
LDS is challenging and it follows from the fact that 
Chapelle and Zien have shown its superiority in respect to 
five other semi-supervised methods, namely to the SVM, 
manifold, Transductive SVM (TSVM), graph and 
Gradient Transductive SVM (∇TSVM). (See the details 
in their paper). The LDS algorithm is an efficient 
combination of the last two mentioned methods namely, 
of the graph approach and ∇TSVM algorithm. In such a 
combination, one first calculates the graph-based 
distances that emphasize low density regions between 
clusters, and then a novel Chapelle-Zien’s ∇TSVM 
algorithm which places the decision boundary in the low 
density regions is applied. More about the algorithms that 
will be compared is given in section 2 below. Because 
both CM and GRFM are the algorithms of the same type 
as the manifold method in Chapelle and Zien (2005), in 
the rest of the paper they will be referred to as the 
manifold approaches when discussed together. 

Paper is organized as follows: in section 2 we introduce 
the methods to be compared. Section 3 describes the data 
sets used. Section 4 shows the experimental results 
obtained by the free-downloadable software for large 
scale semi-supervised learning SemiL (Huang and 
Kecman, 2004). The concluding section ends the 
presentations here and proposes possible avenues for the 
further research in this novel area of semi-supervised 
learning. 
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2.  Algorithms Implemented 

The LDS algorithm is developed on the strong belief that 
the cluster assumption for the data is necessary for a 
development of the successful semi-supervised learning 
algorithm. The cluster assumption is also present in the 
foundation of both the CM and GRFM algorithms, and in 
this respect all three methods are similar. The LDS 
algorithm is a two steps procedure – in the first step one 
calculates the graph-based distances that emphasize low 
density regions between clusters and, in the second part, 
by using the gradient descent, one optimizes the 
transductive SVM which places the decision boundary in 
low density regions. The latter is the property of the 
algorithm that gives its name. The authors claim that the 
combination of the two methods exploits the cluster 
assumption in the best possible way. By comparing LDS 
with five other state-of-the-art semi-supervised learning 
algorithms they actually show its superiority. The LDS 
algorithm involves tuning several parameters and for 
more details one should refer to Chapelle-Zien’s paper. 

The two competing algorithms here are the Consistency 
Method (Zhou et al., 2004) and Gaussian Random Fields 
Model (Zhu et al., 2003). Both approaches are also based 
on the belief that ‘adjacent’ points and/or the points in the 
same structure (group, cluster) should have similar labels. 
This can be seen as a form of regularization (Smola and 
Kondor, 2003) pushing the class boundaries toward 
regions of low data density similarly to LDS. This 
regularization is often implemented by associating the 
vertices of a graph to all the (labeled and unlabeled) 
samples, and then formulating the problem on the vertices 
of the graph (Krishnapuram, 2004). Both algorithms have 
similar property of searching the class boundary in the 
low density region and in this respect they have similarity 
with the ∇TSVM method too. Thus, it is somehow natural 
to compare the different algorithms developed around the 
same principles. This led us to using CM and GRFM to 
the same data sets as in Chapelle-Zien’s paper. Similarly, 
it was a natural idea to replace the second part of the LDS 
(namely the ∇TSVM part) by both the CM and GRFM 
algorithms. Thus, the last two algorithms compared in this 
paper (and dubbed here with a prefix graph &) are the 
combinations of the graph-based distances with the CM 
and GRFM. (Recall that the LDS algorithm is the 
combination of the graph-based distances with the 
∇TSVM method). More precisely, both CM and GRFM 
are applied to a new representation of xi which is 
computed by performing multidimensional scaling to the 
matrix of squared ρ-path distances, i.e., steps 1 to 6 of the 
LDS algorithm in Chapelle-Zien’s paper are used and 
then followed by CM or GRFM.  

As pointed out by Huang and Kecman (2004), the 
performance of CM and GRFM can be affected by the 
balance of the labeled data. Data sets are considered as 
being balanced if each class has the same number of 
labeled data. It has also been shown that a misbalance in 
the labeled data can deteriorate the performance of both 

CM and GRFM significantly. This phenomenon can be 
understood by interpreting CM algorithm in terms of 
random walks on graph as shown in Zhou and Schölkopf 
(2004). In this setting, one can find the expected number 
of steps for a random walk starting at some initial position 
or vertex xi to reach xj and then to return. This expectation 
is often referred to as the commute time between the two 
positions and the CM algorithm uses a normalized 
commute time C  as a measure of closeness for 
classification (more details can be found in Zhou and 
Schölkopf (2004)). A lazy random walking is determined 
by the transition probability matrix P = (1-α)I + αD-1W, 
where W is the affinity matrix, D is a diagonal matrix 
with its (i, i)th element equal to the sum of the i-th row of 
W and α is a constant in (0,1). It has been shown that  the 
normalized commune time satisfies  

C G G G Gij ii jj ij ji∝ + − − if i jx x≠ , 

where G is the inverse of the normalized Laplacian 
matrix 1 2 1 2(I D WDα − −− ) . If we now consider a binary 
classification that is given by f = 1 2 1 2( )I D WDα − −− y, 
then the classification is based on the comparison between  
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as shown in Zhou and Schölkopf (2004). This means, we 
are labeling an unlabeled point by summing up and 
comparing the normalized commute times of the point to 
all the positive labeled points and to all the negative 
labeled points. With more positive labeled points than the 
negative ones, the mean of f will more likely to be greater 
than zero and vice verse. As a results, unlabeled data will 
be more likely to be classified into the class with more 
labeled data by the CM algorithm. GRFM is also based on 
the similar principle in classifying unlabeled data, but 
instead of using the normalized commune time, GRFM 
uses the hitting time in a random walk as a measure of 
closeness. As a result, its performance will be affected in 
the same way when the labeled data is unbalanced. To 
correct this problem, Huang and Kecman (2004) proposed 
a novel decision strategy dubbed as the normalization 
which improves the performances of both CM and GRFM 
substantially, in the cases when the labeled data is 
unbalanced. The normalization step normalizes the output 
f from each binary classification to have the mean of zero 
and standard deviation of one. Thus, each class is treated 
equally. In this work, the normalized versions of CM and 
GRFM will also be included and in Table 2, results 
obtained by them are denoted by an exponent N. 

 

3.  Test Data Sets 

In this work, the same five data sets used in Chapelle and 
Zien (2005) are used for comparing the performances of 
various semi-supervised learning algorithms. Data are 
available at http://www.kyb.tuebingen.mpg.de/bs/people/ 
chapelle/lds/). An overview of data sets can be found in 
Table 1. First, it should be said that the cluster assumption 
holds for all data sets except for the g10N data set. This 

 46 

http://www.kyb.tuebingen.mpg.de/bs/people/


 

fact will show in the results of Table 2 where, for all four 
manifold algorithms, there will be the biggest error for 
g10N data set. Although the same data sets are used, the 
test setting used in this work is slightly different than the 
one implemented in Chapelle and Zien (2005). In order to 
make the results statistically more significant, the mean 
error rates (for the manifold approaches here) were 
calculated using 50 random splits of labeled and 
unlabeled data. The only exception is for the Coil20 data. 
In this data set, the four manifold algorithms under 
investigation are applied to the same 10 random splits 
used in Chapelle and Zien (2005). The reason for such a 
test setting is because Chapelle and Zien (2005) selected 2 
labeled data from each class, i.e., the labeled data is 
balanced in each class and this may also alter the outcome 
of the simulations.  

Table 1. Summary of test data sets 

DATA 
SET CLASSES DIMENSION POINTS LABELED 

COIL20 20 1024 1440 40 

G50C 2 50 550 50 
G10N 2 10 550 50 
TEXT 2 7511 1946 50 
USPST 10 256 2007 50 

In terms of model’s parameters selections, and in order to 
reduce the computational time, we fixed some of the 
parameters in the algorithms and only considered 
combinations of values on a finite grid for the rest of the 
parameters. For the original CM methods, we fixed the α 
parameter to 0.99 and we only varied the σ parameter 
which determines the width of the Gaussian functions 
used in calculation of the affinity matrix W as follows; 
Wij = exp(-|| xi – xj ||2 /2σ2) if i ≠ j and Wii = 0. Because the 
2σ2 value plays a major role to the performance of the 
manifold algorithms, we tried to find the optimal value of 
2σ2 between 0.005 and 200,000. However, it is important 
to point out that in some problems, it is not possible to 
solve the problem for 2σ2 being small value such as 0.005, 
because the conditional number of the Laplacian and 
normalized Laplacian matrices used in the GRFM and 
CM algorithm respectively, will be very high and, 
consequently there will be problems with their inversions. 
In terms of the graph-based distance approach used in the 
LDS methods, we only tested the approach with values of 
ρ equal to 1, 4 and 16. Also, the Chapelle-Zien’s 
parameter δ is fixed at 0.1 and a full graph was used to 
construct matrix D of squared ρ-path distances. (Note that 
D mentioned for GRFM method is not the same matrix as 
the one used here). For all data sets, except for the Coil20 
one, 10 and 100 nearest neighbors are used for a 
construction of the affinity matrix W which is needed for 
CM and GRFM. In the Coil20 data, using the 10 nearest 
neighbors would not produce a fully connected affinity 
matrix and only until the number of nearest neighbors 
exceeds 80, a fully connected affinity matrix could have 
been generated. The normalized versions of the CM and 
GRFM as proposed in Huang and Kecman (2004) have 

also been used in the simulations. All the simulations in 
this work (except for a Coil20 data experiments when a 
Matlab based code was used) are generated using the 
software package SemiL which is a software package 
designed to solve large scale semi-supervised learning 
problems using CM and GRFM. For the simulations that 
require calculation of graph-based distances, Matlab 
based code from Chapelle and Zien was used to generate 
a new representation of xi. The new representation of xi is 
then the input for a SemiL routine.  

4.  Results  

4.1  Performance Comparison Between LDS and 
Manifold Approaches 

Table 2 shows the lowest error rates achieved by CM and 
GRFM based approaches for all the five data sets 
included in this study. The results for the LDS methods 
have been taken directly from Chapelle and Zien (2005) 
with 10 random splits and they are used as references. 
Basic observations are as follows. First, both CM and 
GRFM preceded by the calculation of the graph-based 
distances are better for the multi-class problems than 
LDS, while the latter one is (slightly) better for the two-
class ones. Second, for the two-class problems, 
performance of GRFM is close to the results of LDS, and 
taking the stricter testing criterion used in our experiments 
(50 random runs compared to 10 ones in Chapelle-Zien’s 
paper) they may be even or, there might be some 
advantages for GRFM method as long as the cluster 
assumption for the data is fulfilled. For the g10n data set, 
without the cluster structure, LDS perform much better 
than manifold methods as expected. 

 Table 2. Comparisons of the mean test error rates of five semi-
supervised algorithms 

DATA 
SET LDS CM GCM GRFM GGRFM 

COIL20 4.86 8.9 1.5 9.83N 2.9 
G50C 5.62 7.25N 7.38N 6.56N 6.84N

G10N 9.72 22.29N 23.66N 17.93N 20.8N

TEXT 5.13 13.6N 13.09N 7.27N 7.33N

USPST 15.8 9.74N 8.75N 10.69N 9.3N

LDS = Low Density Separation, CM = Consistency Method, 
GCM = Graph + Consistency Method, GRFM = Gaussian 
Random Fields Model, GGRFM = Graph + Gaussian Random 
Fields Model 

For the Coil20 data set, the lowest error rate of only 1.5% 
is achieved by combining the graph-based distances and 
the CM. The improvement in performance as a result of 
using the graph-based distances for CM and GRFM is 
quite significant in this case from 8.9% to 1.5% (6 times 
better) and 9.83% to 2.9% (3.3 times better) respectively. 
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In this data set, both manifold based algorithms 
outperform the LDS approach and this coincides with the 
fact that manifold method used in Chapelle and Zien 
(2005) performs better than ∇TSVM which is the base 
classifier for the LDS method. The normalized model did 
not perform as well as the non-normalized model. This 
can be attributed to the fact that the 2σ2 value used here is 
very small (2σ2 = 0.005) as well as to the use of balanced 
labeled data. 

For a g50c data set, the LDS method performs the best. 
However, the difference in performance between the 
manifold methods and the LDS method is much closer 
(6.56% vs 5.62%) than the difference (17.3% vs 5.62%) 
shown in Chapelle and Zien (2005). Similarly, in the text 
data set, the performance difference is also shrunken from 
11.71% vs 5.13% to 7.33% vs 5.13%. These changes are 
attributed mostly to the normalization step that lowered 
the error rate by reducing significantly the effect of the 
unbalanced data. Also, the error of 7.33% was obtained 
by the GRFM method that implements Laplacian matrix. 
The use of the graph-based distance does not significantly 
alter the performance in all data sets except for the Coil20 
data and partly for the USPST data. The same 
phenomenon is presented in Chapelle-Zien’s paper too. 
The answer to the question of why the algorithms behave 
in this manner requires more considerations in the future. 

For g10n data set, the performance of LDS is better than 
the results of the manifold methods. This particular data 
set is generated in such a way that the cluster assumption 
does not hold. Therefore, it is not surprising that the 
manifold methods, relying strictly on the cluster 
assumption, have higher error rate. In contrast, LDS 
which is based on ∇TSVM performs much better than the 
manifold approaches. This may be due to the fact that 
∇TSVM is based on the idea of margin maximization as 
SVMs which does not rely on the cluster assumption. 
Also, the incorporation of the graph-based distances does 
not help for the non-clustered data very much.  

In the USPST data set, the normalized version of CM 
with graph-based distances achieved the lowest error rate 
of 8.75%. Also, the performances of all the manifold 
methods (with or without using the graph-based 
distances) are significantly better than the performance of 
the LDS method. This is again attributed to two causes; 
first manifold algorithms perform better for multi-class 
problems and second the normalization step helps in the 
case of unbalanced data. In this multi-class problem the 
use of graph-based distances also improves the 
performance of both CM and GRFM methods.  

The simulation results suggest that incorporating graph-
based distances to semi-supervised learning methods can 
bring more or less substantial performance improvement 
in multi-class problems only. These improvements can be 
found not just for the ∇TSVM as shown in Chapelle and 
Zien (2005), but also for the manifold approaches used 
here.  

Another interesting trend is that using the graph-based 
distance with the manifold methods works the best when 
the value of ρ is in the lower region meaning either 1 or 4 
for all data sets. More investigations are needed to explain 
this phenomenon. 

The reason why the manifold approach is better in the two 
multi-class problems may be due to the fact that manifold 
approaches perform global optimization over all n 
classifiers, while the ∇TSVM designs separately n 
classifiers by maximizing the margin of each classifier. 
The cost function of ∇TSVM is non-convex (Joachims, 
1999), and it always finds some suboptimal solutions for 
each particular classifier. In addition to that, it is well 
known that the sum of suboptimal solutions can not and 
does not produce an overall optimum. Hence, the 
performance of ∇TSVM will not be as optimal as the 
manifold approach in multi-class problems. 

4.2 Normalization Steps and the Size of σ Parameter 

From Table 2 it is clear that the normalized models 
dominated in the most of the data sets. Thus, it is 
important to know when and how the normalization step 
should be applied to the manifold algorithms.  
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Figure 1. The effect of normalization step and size of σ 
parameter on the USPST data set. The relative size of σ is 
calculated by finding out the ratio between 2σ2 and the mean 
value of all the non-zero elements in the affinity matrix W.

During the extensive simulations on these data sets, a very 
clear relationship between the size of σ parameters and 
the performance of the normalized model is observed 
across all the data sets. Figure 1 shows the performance of 
the normalized CM and non-normalized CM with various 
σ parameters on a 10 nearest neighbor graph for the 
USPST data set. The performance of both models stays 
relatively constants, as size of σ gets larger than certain 
value.  

However, with larger σ, the performance of the 
normalized model (error rate is 12%) is far more superior 
to the one of the non-normalized model (error rate is 
30%). In contrast, the performance of the non-normalized 
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model is better than the one of the normalized model 
when σ is relatively small. This means that the effect of 
unbalanced data discussed in Huang and Kecman (2005) 
is more noticeable as the size of σ gets larger. This 
phenomenon can be explained as follows: when the σ 
value is large, the influence of the distance between the 
data points becomes less important, because in such a 
setting even a distant pairs of point will have relatively 
large similarity in the affinity matrix W. As a result, this 
will make the classification of the unlabeled point 
dominated by the number of labeled points in each class. 
The normalized procedure tries to remove this effect by 
standardizing the output of F. This also explains why the 
non-normalized models perform better than the 
normalized ones in the coil20 data sets. This is because 
the size of 2σ2 used is only 1.7% of the mean value of the 
non-zero element in the W matrix. 

The result shown in this section provides some guidelines 
as to when the normalization step can be used in relation 
with the σ parameter in order to obtain better 
performance. It also shows two possible zones where the 
σ parameter is optimal. For a given problem, one needs to 
compare the performance of the normalized model with 
relatively large σ, to the non-normalized model with 
relatively small σ and a better model should be found. 

5.  Conclusions 

In this work, four different manifold algorithms (basic 
CM and GRFM and their derivatives) are applied to five 
different test data sets and compared to the LDS method. 
We have found that the manifold algorithms have much 
better performance in both multi-class data sets, whereas 
the LDS performs slightly better for the two-class data 
holding cluster assumption. This may be due to the fact 
that the cost function of the manifold approach is convex, 
whereas the one for ∇TSVM is non-convex. Thus, the 
solution of ∇TSVM is not as optimal as the ones from 
manifold approaches. For the two-class data set without 
cluster structure (g10n) the LDS method performs much 
better than the manifold algorithms. This preliminary 
result suggests that the manifold algorithms may be more 
suitable for handling multi-class problems than the LDS 
and ∇TSVM methods. However, more investigations 
need to be done in the future in order to confirm the 
findings here and to explore the possibilities of the 
algorithms discussed. 

By combing the graph-based distances and the manifold 
methods, the performance of the algorithms is greatly 
improved in multi-class data sets only. It seems that the 
use of the graph-based distances does not help the 
manifold approaches for the two-class problems.  

This work also demonstrates when the normalization step 
can benefit the performance of the manifold method in 
relation to the choice of the shape (width) parameter σ. 
The results suggest that with relative large value of σ 

parameter, the normalization can improve the 
performance of the algorithm substantially. On the other 
hand, when a relative small value of σ is more appropriate 
for a given data set, the normalization procedure does not 
seem to provide significant improvements. This gives 
some guidance when performing the model parameters 
selection for the manifold type of algorithms discussed in 
this work.  
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