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Abstract

We present a novel approach to semi-
supervised learning which is based on statis-
tical physics. Most of the former work in the
field of semi-supervised learning classifies the
points by minimizing a certain energy func-
tion, which corresponds to a minimal k-way
cut solution. In contrast to these methods,
we estimate the distribution of classifications,
instead of the sole minimal k-way cut, which
yields more accurate and robust results. Our
approach may be applied to all energy func-
tions used for semi-supervised learning. The
method is based on sampling using a Mul-
ticanonical Markov chain Monte-Carlo algo-
rithm, and has a straightforward probabilis-
tic interpretation, which allows for soft as-
signments of points to classes, and also to
cope with yet unseen class types. The sug-
gested approach is demonstrated on a toy
data set and on two real-life data sets of gene
expression.

1. Introduction

Situations in which many unlabelled points are avail-
able and only few labelled points are provided call for
semi-supervised learning methods. The goal of semi-
supervised learning is to classify the unlabelled points,
on the basis of their distribution and the provided la-
belled points. Such problems occur in many fields, in
which obtaining data is cheap but labelling is expen-
sive. In such scenarios supervised methods are imprac-
tical, but the presence of the few labelled points can
significantly improve the performance of unsupervised
methods.

The basic assumption of unsupervised learning, i.e.
clustering, is that points which belong to the same
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cluster actually originate from the same class. Cluster-
ing methods which are based on estimating the density
of data points define a cluster as a ‘mode’ in the dis-
tribution, i.e. a relatively dense region surrounded by
relatively lower density. Hence each mode is assumed
to originate from a single class, although a certain class
may be dispersed over several modes.

In case the modes are well separated they can be eas-
ily identified by unsupervised techniques, and there is
no need for semi-supervised methods. However, con-
sider the case of two close modes which belong to two
different classes, but the density of points between
them is not significantly lower than the density within
each mode. In this case density based unsupervised
methods may encounter difficulties in distinguishing
between the modes (classes), while semi-supervised
methods can be of help. Even if a few points are la-
belled in each class, semi-supervised algorithms, which
cannot cluster together points of different labels, are
forced to place a border between the modes. Most
probably the border will pass in between the modes,
where the density of points is lower. Hence, the forced
border ‘amplifies’ the otherwise less noticed differences
between the modes.

For example, consider the image in Fig. 1a. Each
pixel corresponds to a data point and the similarity
score between adjacent pixels is of value unity. The
green and red pixels are labelled while the rest of the
blue pixels are unlabelled. The desired classification
into red and green classes appears in Fig. 1b. It is
unlikely that any unsupervised method would parti-
tion the data correctly (see e.g. Fig. 1c) since the
two classes form one uniform cluster. However, using
a few labelled points semi-supervised methods which
must place a border between the red and green classes
may become useful.

In recent years various types of semi-supervised learn-
ing algorithms have been proposed, however almost
all of these methods share a common basic approach.
They define a certain cost function, i.e. energy, over
the possible classifications, try to minimize this en-
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ergy, and output the minimal energy classification as
their solution. Different methods vary by the specific
energy function and by their minimization procedures;
for example the work on graph cuts (Blum & Chawla,
2001; Boykov et al., 1999), minimizes the cost of a cut
in the graph, while others choose to minimize the nor-
malized cut cost (Joachims, 2003; Yu & Shi, 2001), or
a quadratic cost (Zhu et al., 2003; Zhou et al., 2003).

As stated recently by (Blum et al., 2004), searching for
a minimal energy has a basic disadvantage, common
to all former methods: it ignores the robustness of the
found solution. Blum et al. mention the case of sev-
eral minima with equal energy, where one arbitrarily
chooses one solution, instead of considering them all.
Put differently, imagine the energy landscape in the
space of solutions; it may contain many equal energy
minima as considered Blum et al., but also other phe-
nomena may harm the robustness of the global mini-
mum as an optimal solution. First, it may happen that
the difference in energy between the global minimum,
and close by solutions is minuscule, thus picking the
minimum as the sole solution may be incorrect or arbi-
trary. Secondly, in many cases there are too few data
points (both labelled and unlabelled) which may cause
the empirical density to locally deviate from the true
density. Such fluctuations in the density may drive
the minimal energy solution far from the correct one.
For example, due to fluctuations a low density “crack”
may be formed inside a high density region, which may
erroneously split a single cluster in two. Another type
of fluctuation may generate a “filament” of high den-
sity points in a low density region, which may unite two
clusters of different classes. In both cases, the minimal
energy solution is erroneously ‘guided’ by the fluctu-
ations, and fails to find the correct classification. An
example of the latter case appears in Fig. 1a; the clas-
sifications provided by three semi-supervised methods
appear in Fig. 1d–f, fail to recover the desired classifi-
cation, due to a ‘filament’ which connects the classes.

Searching for the minimal energy solution is equiva-
lent to seeking the most probable joint classification
(MAP). A possible remedy to the difficulties in this
approach may then be to consider the probability dis-
tribution of all possible classifications. Blum et al.
provided a first step in this direction using a random-
ized min-cut algorithm. In this work we provide a
different solution based on statistical physics.

Basically each solution in our method is weighed by
its energy E(classification), also known as the Boltz-
mann weight, and its probability is given by:

Pr(classification; T ) ∝ e−E(classification)/T (1)

where the “temperature” T serves as a free parameter,

and the energy E takes into account both unlabelled
and labelled points. Classification is then performed
by marginalizing (1), thus estimating the probability
that a point i belongs to a class c. This formalism
is often referred to as a Markov random field (MRF),
which has been applied in numerous works, includ-
ing in the context of semi-supervised learning by (Zhu
et al., 2003). However, they seek the MAP solution
(which corresponds to T = 0), while we estimate the
distribution itself (at T ≥ 0).

Using the framework of statistical physics has several
advantages in the context of semi-supervised learn-
ing: First, classification has a simple probabilistic in-
terpretation. It yields a fuzzy assignment of points
to class types, which may also serve as a confidence
level in the classification. Secondly, since exactly es-
timating the marginal probabilities is, in most cases,
intractable, statistical physics has developed elegant
Markov chain Monte-Carlo (MCMC) methods which
are suitable for estimating semi-supervised systems.
Due to the inherent complexity of semi-supervised
problems, ‘standard’ MCMC methods, such as the
Metropolis (Metropolis et al., 1953) and Swendsen-
Wang (Wang & Swendsen, 1990) methods provide
poor results, and one needs to apply more sophisti-
cated algorithms, as discussed in section 3. Thirdly,
using statistical physics allows us to gain an intuition
regarding the nature of a semi-supervised problem, i.e.,
it allows for a detailed analysis of the effect of adding
labelled points to an unlabelled data set. In addi-
tion, our method also has two practical advantages: (i)
while most semi-supervised learning methods consider
only the case of two class types, our method is natu-
rally extended to the multi-class scenario. (ii) Another
unique feature of our method is its ability to suggest
the existence of a new class type, which did not appear
in the labelled set.

Our main objective in this paper is to present a frame-
work, which can later be applied in different directions.
For example, the energy function in (1) can be any of
the functions used in other semi-supervised methods.
In this paper we chose to use the min-cut cost func-
tion. We do not claim that using this cost function
is optimal, and indeed we observed that it is subopti-
mal in some cases. However, we aim to convince the
reader that applying our method, to any energy func-
tion, would always yield equal or better results than
merely minimizing the same energy function.
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Figure 1. a. The unlabelled data in blue; labelled points are marked in green and in red. Each of the 1360 pixels
correspond to a data point; the labeled pixels were enlarged for clarity. b. The correct classification. c. Clustering
results of the unsupervised normalized cut algorithm (Shi & Malik, 2000). d. The min-cut solution. e. The results
of the semi-supervised consistency method of (Zhou et al., 2003). f. The outcome of the spectral graph transducer
algorithm (Joachims, 2003), which is a semi-supervised extension of the normalized cut algorithm.

Our work is closely related to the typical cut criterion
for unsupervised learning, first introduced by (Blatt
et al., 1997) in the framework of statistical physics and
later in a graph theoretic context by (Gdalyahu et al.,
1999). The method introduced in this work can be
viewed as an extension of these clustering algorithms
to the semi-supervised case.

The paper is organized as follows: Section 2 presents
the model, and Section 3 discusses the issue of esti-
mating marginal probabilities. Section 4 presents the
qualitative effect of adding labelled points. Our semi-
supervised algorithm is outlined in Section 5. Section 6
demonstrates the performance of our algorithm on a
toy data set and on two real-life examples of gene ex-
pression data.

2. Model definition

In our model each data point i, i = 1, . . . , N , corre-
sponds to a random variable, or spin, si which can
take one of q ≥ 2 discrete states. The number of states
q matches the number of class types in the labelled
set. A certain classification of the data set then corre-
sponds to a vector S, S = {s1, . . . , sN}. Assume that
the first M � N points are labelled, i.e., the state
of spin sk, 1 ≤ k ≤ M is clamped to a spin value ck,
which corresponds to the class type of point k. Hence
the energy E in our case is simply the Potts model en-
ergy of a granular ferromagnet with an external field;

E(S) =
∑

〈i,j〉

Jij(1 − δsi,sj
) +

M
∑

k=1

hk(1 − δsk,ck
). (2)

where Jij > 0 is a predefined similarity between points
i and j, 〈i, j〉 stands for all edge of neighboring graph,
and δsi,sj

= 1 when si = sj and zero otherwise. The
second term which corresponds to the labelled points,
is known as the ‘external field’ term. In case the value
of sk is different from the point’s assigned class ck, the
energy is increased by a value hk. We used hk = ∞,
which assigns non-zero probability only to classifica-
tions in which sk = ck. Notice that one can introduce
uncertain labels by using finite values of hk, but we do
not consider this case in this work.

The major problem in applying the suggested method
concerns the difficulty in calculating (1). Since the
number of possible classifications is exponential in N ,
one often needs to apply sampling MCMC algorithms,
which are considered in the next section.

3. Estimating marginal probabilities

Introducing labelled points inherently changes the
properties of the system and poses great difficulties
in MCMC sampling. Labelled points may introduce
‘frustration’ into the system (a term borrowed from
statistical physics); if, for example, point i is connected
to a couple of differently labelled points j and k, it is
‘frustrated’ since whenever it matches one of them it
contradicts the other. Such frustration appears also
in physical systems of spin glasses, and is known to
complicate their analysis.

The difficulty in sampling from spin glass systems re-
sults from their ragged energy landscape. The energy
landscape can be described as being composed of sev-
eral ‘valleys’ which are surrounded by very high en-
ergy barriers, which the sampling method is unable
to traverse at low temperatures. As a results, ‘stan-
dard’ MCMC methods, e.g. the Metropolis and the
Swendsen-Wang methods, are confined to a certain
‘valley’ for an exponential number of Markov chain
steps, thus their estimates may be highly biased.

Extended MCMC methods is a title given for a family
of methods which enable efficient sampling in complex
scenarios such as spin-glasses (Iba, 2001). Extended
MCMC methods solve the sampling problem by allow-
ing the system to ‘jump’ between ‘valleys’. This is im-
plicitly performed by letting the system pass through
high energy configurations, which most likely erase any
memory of the originating ‘valley’. In this work we ap-
plied the Multicanonical Monte-Carlo method (Berg &
Neuhaus, 1992), which is a member of the extended
MCMC methods.

The Multicanonical Monte-Carlo method first esti-
mates the density of states D(E), i.e. the number
of different classifications at a given energy. It then
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generates a sample of classifications, {S}, drawn from
the distribution PrD(S) ∝ 1/D(E(S)), which can then
be used to recover the Boltzmann distribution (1), for
all temperatures T at once. Sampling from PrD(S)
yields a uniform distribution over all energy levels,
which forces the MCMC to pass through high energy
configurations and by that overcome the energy barri-
ers. For further details about the method we refer the
reader to (Iba, 2001).

Before presenting the effect of labelled points, we
would like to shortly discuss an alternative to MCMC
sampling, which is to approximate the marginal prob-
abilities using methods from the field of graphical
models. The intimate connections between statistical
physics and graphical models have been demonstrated,
e.g. by (Yedidia et al., 2000). Our Boltzmann distri-
bution corresponds to an undirected graphical model,
thus estimating the marginal probabilities is equivalent
to performing inference in this model. Since exact in-
ference, via the junction tree algorithm (Pearl, 1988),
is generally intractable, one needs to resort to ap-
proximate methods, such as (loopy) belief propagation
(BP) or generalized belief propagation (GBP) (Yedidia
et al., 2000). In our experimental study the per-
formance of BP was rather poor, probably since the
graphical model of a typical semi-supervised problem
contains many short loops. On the other hand the per-
formance of GBP was excellent, when applied to two
dimensional problems, as in Fig. 1. However, to date
there exists no principled way of applying GBP to a
general graph, which guarantees good approximate in-
ference, therefore we consider only MCMC sampling.

4. The effect of labelled points

As explained in section 3 the labelled points inherently
complicate the sampling of the system. On the other
hand, adding labelled points has the desired effect on
classification. In order to understand this phenomenon
we first describe the unsupervised case and then qual-
itatively explain the effects of adding labelled points.

The properties of a system, governed by the Boltz-
mann distribution (1), changes with the temperature
T . In many physical systems, the temperature range
T ≥ 0 can be divided into intervals, or phases, each
of which has its own global properties. Granular-
ferromagnets without external fields (i.e. keeping the
first term of (2)), which correspond to the unsuper-
vised case, are known to have three phases (Wiseman
et al., 1998); a low-temperature phase in which the
system is ferromagnetic, i.e. most of the spins are as-
signed the same value; a high temperature phase in
which the system is paramagnetic, i.e. the values as-

signed to the spins are nearly independent; and an in-
termediate phase termed the super-paramagnetic (SP)
phase. In this phase, which is the most relevant for
clustering, all spins of a grain (i.e. a cluster) are as-
signed a certain value, with different values at different
grains. The clusters in the data can be identified in
this SP phase; the larger the temperature interval of
this phase, the more significant and stable is the clus-
tering solution (Levine & Domany, 2001).

Adding labelled points changes the system’s behavior.
First, it effectively increases the strength of the inter-
action between spins near labelled points, which can
be interpreted as an increase of their local density. As
a result there is an increase in the transition tempera-
ture between the ordered SP phase and the unordered
paramagnetic phase, thus increasing temperature in-
terval of the SP phase at its the upper limit.

A second effect happens at low temperatures. For
example, consider the case of two dense grains, each
containing a labelled point of a different type, which
are separated by a lower density region. In the SP
phase the spins in each of the grains attain their cor-
rect class, but the spins in the low density region are
still unordered. As the temperature is lowered the two
classes ‘penetrate’ into the low density region until a
‘border’ between the classes is formed. Hence, from a
semi-supervised perspective, the labelled points cause
the low density region to be classified. Notice that at
this temperature the unsupervised case is already at
the ferromagnetic phase, where the two clusters are
united. Hence, the labelled points also decrease the
lower limit of the SP phase, which together with in-
creasing its upper limit, results in a larger temperature
interval relevant for classification.

When the temperature is further lowered, a different
classification may appear. For example, one of the
class types may overtake the whole system, similar to
the min-cut solution in Fig. 1d, but, of course, we are
not interested is such a solution.

Fig. 2 presents the effect of adding labelled points in
the case of Fig. 1a. We plot the number of misclas-
sified points using the algorithm in Sec. 5, as a func-
tion of T , in the unsupervised (US) and in the semi-
supervised (SS) cases. In this data set we calculated
(1) exactly using the junction tree algorithm (exact
US and exact SS), and compared it to Multicanoni-
cal sampling (MC). Notice that adding labelled points
decreases the number of errors dramatically, achieving
almost correct classification over a large temperature
interval (0.5 ≤ T ≤ 1). At lower temperatures, which
correspond to the min-cut solution (Fig. 1d), the num-
ber of misclassified points is large.
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Figure 2. Classification
error as a function of
T for the data set
in Fig.1a. A com-
parison between the
unsupervised case
(exact US) and the
semi-supervised case
(exact SS), calculated
exactly using the junc-
tion tree algorithm,
and the Multicanon-
ical MCMC method
(MC).

5. The algorithm

Our semi-supervised learning algorithm is comprised
of two parts: an estimation part, and a classification
part which are described below.

Estimation consists of three stages:
• Map each point i to a q-state random variable si,
where q is the number of class types of labelled points.
• Construct a graph G of neighboring points i and j
and assign a their pairwise similarity Jij > 0.
• Estimate the marginal probabilities pi(si; T ) and
pij(si, sj ; T ), as explained in Sec. 3.

Classification of a point i at a temperature T can
simply be performed by argmax1≤k≤qpi(si = k; T ).
However, we suggest a heuristic method which is
slightly more elaborate, but takes into account the con-
fidence in the classification, and also allows to identify
new class types. This heuristic is comprised of two
steps:
• Classify ‘confident’ points, using single point prob-
abilities pi: For each point i we find the two most
probable class assignments and their probabilities; p1

and p2. In case p1 − p2 > τ , where τ > 0 is a user
defined confidence parameter, we classify point i ac-
cording to the type which corresponds to p1.
• Classify the remaining, less ‘confident’ points, using
the pairwise probabilities pij : Following the intuition
of (Blatt et al., 1997) we estimate the pairwise corre-
lations between i and j defined as

Cij(T ) =

q
∑

k=1

pij(si = k, sj = k; T ),

where the correlation ranges from the random level
1/q, to a perfect correlation value of 1. We then delete

edges from the graph G for which Cij(T ) < 1
2

(

1 + 1
q

)

,

i.e., half way between random level and perfect correla-
tion, and find the connected components of the result-
ing graph. Each ‘unconfident’ point j is then classified

according to the connected component to which it be-
longs. In case j belongs to a connected component
which contains points (already) classified as ck, then
j is assigned to ck. If j belongs to a connected com-
ponent which contains points which were assigned to
several different classes, it is remains unassigned and is
marked as “confused” between these classes. Finally,
all the points which belong to a connected component
that does not contain any classified point are marked
as a new class.

Notice that the classification depends on T . The ratio-
nal is to supply the user with a classification ‘profile’ of
each data point, over all temperatures. Since statisti-
cally significant classifications span large temperature
intervals, such a ‘profile’ is rather limited in size. For
example, the ‘profile’ of a point j which resides in class
c1, close to the border with class c2 would contain two
classifications: at low temperatures j is assigned to c1,
and at higher temperatures it is marked as “confused”
between c1 and c2.
As for the value of τ , our experimental study has
shown that classification performance decreases with
increasing the value of τ (data not shown), thus we
chose to use τ = 0.1.

In case there are no labelled points pi(si = k) =
1/q ∀i, k then all points are treated as ‘unconfident’,
and our ‘classification’ simply coincides with the clus-
tering procedure of (Blatt et al., 1997).

6. Experimental results

We present results over three data sets: A toy data
set, and two real-life data sets of gene expression.

6.1. Toy data

Fig. 3 presents a toy data set similar to Fig. 1, which
contains 1306 data points from three classes. As in
the former toy data, the similarity between adjacent
pixels is of unit value, hence the three classes form one
connected cluster, which can not be separated without
the labelled points.

Figure 3. A toy data set
comprised of three classes.
Each pixel corresponds to a
data point, and Jij = 1 for
all adjacent pixels i and j.
The labelled points are ran-
domly sampled with a uni-
form distribution. In or-
der to enable correct classi-
fication the labelled points
from the lower two classes
are sampled from the area
marked by a rectangle.

41



In order to evaluate the performance of our approach
we carried two sets of experiments. In the first set we
randomly chose M1 labelled points (M = 5, 10, 15 and
20) from the two lower (green and red) classes, i.e. q =
2, while in the second set of experiments the labelled
points where randomly chosen from all three classes,
i.e. q = 3. For each value of M and q we evaluated 100
instances (realizations) of random labelling, and the
number of misclassified points appear in Fig. 4. The
number of misclassified points in the unsupervised case
was 1001, and was evaluated as explained in Sec. 5.

As expected, incorporating even a few labelled points
has a significant impact on the number of misclassified
points. As can be seen, the results highly depend on
the specific instance of labelled points, hence the aver-
age performance is less informative. Therefore the in-
stances are presented in an increasing order of misclas-
sified points of our approach (MC), while the other two
lines correspond to the graph-cuts method2 (GC) and
to the local-global consistency method (Zhou et al.,
2003) (LGC). In order to plot the MC line in Fig. 4
we automatically selected a temperature, T ∗, in which
classification is significantly different from the ground
state (T = 0) solution, and is also most ‘stable’. At
each T we consider only the points, c(T ), whose classi-
fication is both confident and different than the T = 0
solution. We define a score η(T ) = ‖c(T )‖·s(T ), where
s(T ) is the average temperature interval in which
the classifications of c(T ) remain unchanged. Then,
T ∗ = argmax η(T ), and in case η(T ∗) < η0, we set
T ∗ = 0. In general, we recommend to use the ‘pro-
files’ of the points, since there may be several ‘stable’
solutions at different temperatures.

In comparing our method and graph-cuts, both of
which use the same energy function, it can be observed
that our method always achieves an equal or lower
number of misclassifications than graph-cuts. How-
ever, it appears that in several instances of labelled
points, it is preferable to apply the energy function
of (Zhou et al., 2003).
Also it seems that for q = 2 our method significantly
outperforms the other two methods, mainly due to its
ability to identify the third class type, although none
of its points is labelled. For q = 3 the solutions of
graph-cuts and of our method become similar as the
number of labelled points increases.

6.2. Leukemia gene expression data set

In this section we present the results of applying our
algorithm to a real-world problem of cancer classifica-

1M denotes the total number labelled points.
2In order to apply graph-cuts when q = 3 we used the

approximation of (Boykov et al., 1999).

tion and class discovery. In cancer research, there is a
particular need for semi-supervised techniques, as the
classes and sub-classes (cancer types) are only partially
known. Hence one needs to apply methods that can
help partition the data into known classes and possibly
identify novel ones.

Our example is based on gene expression data3 of
acute leukemia published by (Armstrong et al., 2002).
They analyzed three different types of acute leukemia;
acute myeloid leukemia (AML), acute lymphoblastic
leukemia (ALL) and a sub-type of ALL which carries
a chromosomal translocation in the MLL gene. Arm-
strong et al. show (in a supervised manner) that this
sub-type has a distinct molecular profile and can be
considered a new type of leukemia termed MLL.

We applied our algorithm to the 57 leukemia samples
in (Armstrong et al., 2002) (20 ALL, 20 AML and 17
MLL samples), each described by the expression lev-
els of the 200 genes with largest variance across sam-
ples. The similarity between samples was calculated
in a standard manner in this field4. The same as in
Sec. 6.1, we carried two set of experiments. In the
first set of experiments we randomly chose M points
(M = 2, 4, 6) from the ALL and AML samples but not
from the MLL class, and in the second set of experi-
ments M labelled points (M = 3, 6, 9) were randomly
selected from all three classes. The results appear in
Fig. 5 in the same format as in Fig. 4. The number of
misclassified points in the unsupervised case was 11.

As in the previous data set, our method always
achieves an equal or lower number of misclassifications
than graph-cuts. Notice that in the q = 2 case, our
method is able to predict the existence of MLL, while
all 17 MLL points are misclassified in the other meth-
ods. It appears that for this data set, applying the
min-cut cost function is almost always superior to the
quadratic cost function of (Zhou et al., 2003). Another
interesting phenomenon is the relatively low number of
misclassifications in the unsupervised case. It happens
that in 20% − 40% of the instances (depending on q
and M) it is preferable to apply our method without

the labelled points.

6.3. Yeast cell cycle gene expression data

In this section we describe an application of our
method to a real-life problem in cellular biology for

3Simultaneous measurements of mRNA levels of thou-
sands of genes in a single tissue sample.

4The expression level of each gene is ‘normalized’ by
subtracting its mean expression over all samples, and di-
vided by its standard deviation. The distance between
samples i and j, dij , is then the Euclidean norm over their
200 genes, and Jij = exp(−d2

ij/a2) where a = 〈d〉 .
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Figure 4. The number of misclassification out of 1306 points of Fig. 3, for q = 2 (upper row) and for q = 3 (lower row) for
100 random samples of labelled points M (M = 5, 10, 15 and 20 from left to right). We compare our method (MC, black
line) to graph-cuts (GC, red line) and to the local-global method (LGC, green line). Also shown is the mean performance
µ and its standard deviation. In the unsupervised case the number of misclassified points was 1001.
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Figure 5. The same as in
Fig. 4 but for 57 leukemia
samples. The values of q and
M appears in each panel.
The number of misclassified
points in the unsupervised
case was 11.

which the true solution is partly unknown. This con-
cerns the assignment of the yeast’s genes to the stage
in the cell cycle in which they are expressed. While
the yeast’s genome is well-characterized, the function
of many of its genes remains to be determined. There-
fore, correctly assigning genes to their cell cycle phase
may shed light on their function and help connect them
to the emerging cellular network.

The Yeast’s cell cycle was studied by various re-
searchers, typically by applying unsupervised meth-
ods, e.g. (Spellman et al., 1998; Alter et al., 2003).
Here we use the data of Spellman et al. which mea-
sured the expression level of the yeast’s genes at 18
specific times over the course of two cell-cycles, thus
data consists of 18 measurements of more than 6000
genes. Due to experimental difficulties some of the
entries in this 18× 6000 matrix are missing, hence fol-
lowing (Alter et al., 2003) we used a subset of 4523
genes for which at least 15 out of the 18 readings are

available. For 77 of these genes, the assignment to one
of 5 stages in the cell cycle (M/G1, G1, S, S/G2 and
G2/M) is well established. Therefore, we have a multi-
class classification problem (q = 5) of 4523 points in
18 dimensions, with 77 labelled points. As a similarity
measure we used a standard protocol as in Sec. 6.2.

Since ground truth is not available in this problem we
decided to measure the success rate of our method by
comparing our results to the proposed classification of
Spellman et al. They used several biological criteria in
order to rank the genes according to their participation
in the cell-cycle. Their list consists of 604 out of the
4523 genes, and 69 of them also appear in the list of
known 77 genes, leaving 535 genes as a test set.

We classified the 535 points to one of the 5 classes,
or marked them as ‘confused’ between classes. When
considering only the classified points and treating the
‘confused’ points as errors our average success rate is
32% (over the 5 classes), while graph-cuts reaches 20%.
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7. Discussion

We introduced an approach to semi-supervised learn-
ing which is based on statistical physics. Our approach
may be applied to any energy function, and yields an
equal or better performance than minimizing the same
energy function. Our method is most suitable in case
the number labelled points is small, since its classifica-
tions would coincide with the minimal energy solution
as the number of labelled points becomes larger.

The method is based on the Multicanonical MCMC
method, which allows for an efficient estimation of the
Boltzmann distribution, even in the multi-class sce-
nario. The basic difficulty in methods which seek the
minimal energy, i.e. work at T = 0, is that the multi-
class scenario is NP-hard. We avoid such difficulties
since the interesting regime for classification is T > 0.

The computational complexity of MCMC is hard to es-
timate, as it is problem dependent. A large multi-class
data set may indeed be difficult to sample, and require
a long run, which calls for even more efficient MCMC
or approximation methods. However, we hope to have
convinced the reader that our performance gain over
other, more efficient, methods may be worthwhile.

Although our results display the advantages of incor-
porating labelled points in an unsupervised setting,
the performance highly depends on the specific choice
of labelled points, and in some cases it is even prefer-
able to ignore the labelled points. A related phe-
nomenon already appeared in previous work, e.g. (Co-
hen et al., 2004), and should be thoroughly addressed.
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