Learning from partially labelled data—with confidence
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Abstract

In this paper, we propose a unifying treat-
ment of several strategies for training mix-
ture models from label-deficient data. Af-
ter a review of different approaches to esti-
mating classification models on partially la-
belled data using mixture models, we identify
a number of problems which lead us to pro-
pose a new EM variant. The aim is to better
handle unlabelled data and provide a more
confident discrimination decision. This is il-
lustrated by an experimental comparison of
the different models on the Leptograpsus crab
data.

1. Overview

Supervised Machine Learning techniques have reached
a level of sophistication that allows the efficient auto-
matic training of various linear and non-linear mod-
els, even in situations like Natural Language Process-
ing tasks where examples live in very-high dimensional
spaces (Joachims, 1998). In many situations, however,
labelling data is a costly and time-consuming process.
Annotating biological texts, for example, requires the
help of educated biologists who, in addition to be-
ing expensive, may be reluctant to carry out tedious
annotation tasks. On the other hand, unannotated
data is often plentiful. In biology, querying PubMed
(PubMed, 2005) with few appropriately formed queries
can easily return thousands of documents. Unsuper-
vised learning techniques may be applicable to this
plethora of unlabelled data. However, they are often
less sophisticated than supervised methods, tend to
require more data to reach comparable performance,
and, most importantly, are intrinsically unable to sat-
isfactorily address typical supervised learning prob-
lems, such as discriminant analysis. The development
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of methods that can learn from a combination of la-
belled and unlabelled (aka partially-labelled) data is
therefore of high practical relevance. In the context
of mixture models, such work was initiated by Miller
and Uyar (Miller & Uyar, 1997), following early work
on the topic (Shashahani & Landgrebe, 1994), and ap-
plied for example by (Nigam et al., 2000).

Other techniques have been proposed for learning from
partially labelled data. In the context of statistical
learning, let us mention for example the transductive
inference approach to Support Vector Machines (Gam-
merman et al., 1998; Joachims, 1999), or the use of
Fisher kernels (Jaakkola & Haussler, 1999) obtained
from probabilistic models of the unsupervised data.
Although these various techniques may in principle be
combined, some investigations have revealed that this
does not necessarily yield an improvement in perfor-
mance (Goutte et al., 2004).

In this contribution, we focus on the mixture model ap-
proach. We identify crucial issues with respect to their
use on partially-labelled data: soft partitioning versus
hard partitioning, the cluster impurity problem, and
the treatment of unlabelled data clusters. We propose
a unifying review of different learning strategies, and
propose a new EM variant for learning mixture mod-
els on partially-labelled data. This is illustrated by
experimental results obtained by Gaussian mixtures,
similar to Mixture Discriminant Analysis (Hastie &
Tibshirani, 1996), on the Leptograpsus crab data.

2. Estimating mixture models on
partially-labelled data

In situations where few labelled data co-exist with
large amounts of unlabelled data, combining labelled
and unlabelled data to design statistical classifiers
meets the needs for models that are both adequate,
ie they correctly model the data to be classified,
and discriminative, ie they allow for a clear separa-
tion between data from different classes. Unlabelled
data plays a crucial role in model adequacy since the



amount of labelled data is typically insufficient to ac-
curately estimate model parameters. Miller and Uyar
(Miller & Uyar, 1997) propose two EM variants for de-
signing statistical classifiers from label-deficient data,
using mixture models. These two variants are close
but differ in the definition of the latent variables used
in the EM algorithm (cf. section 2.2). Miller and Uyar
also discuss two ways to map mixture components to
class labels. In hard-partitioning, the mixture compo-
nents unequivocally determine the class labels, ie each
mixture component is associated to one and only one
class. In soft partitioning the assignment is probabilis-
tic, ie each component may in principle generate labels
from all classes.

The difference between the two EM variants proposed
in (Miller & Uyar, 1997) is mainly formal, since they
represent two ways to maximise the same likelihood.
However, the difference in partitioning methods leads
to models with different levels of flexibility. In all
cases, however, class labels for unlabelled data can
naturally be derived through maximum a posteriori
classification. Test data may be directly integrated as
unlabelled data in the learning phase, improving the
model estimation and getting directly a class assign-
ment in the process. This may be seen as an instance
of transductive inference (Vapnik, 1998).

In the following, we assume that we have a dataset

= (U, L) with U = {x@‘ }1 1,..m the unlabelled ex-
amples set and £ = {(z(, 2( )} =m+1,...n. the labelled
examples set. We model the data usmg a mixture
model with K components «:

Z P(a
for labelled data and

= ZP(x,z) =

for unlabelled data. This corresponds to a simple
graphical model where unobserved compo-
nents « generate the observed data x and correspond-
ing label z independently. Training mixture models
is conveniently done using the EM algorithm (Demp-
ster et al., 1977). We review below 3 versions of EM
that have been proposed so far for handling partially
labelled data. For the last two versions, we then dis-
cuss hard and soft partitioning of labels with respect
to components. We describe the problem of cluster
impurity which has adverse effect on the discrimina-
tive power of the model when classes are unbalanced
and badly aligned with the underlying density. This
leads us to introduce a new version of EM to train

P(z]a)

P(z|«a)

Y Pla)P(z]a)
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mixture models on partially-labelled data, which takes
into account the proportion of unlabelled data associ-
ated with each mixture component.

2.1. EMO

A simple way to bypass the problems raised by
partially-labelled data in probabilistic modelling is to
strip labelled data of their label, and estimate the mix-
ture parameters for P(x) on all the (now unlabelled)
data. Of course, this does not directly yield a clas-
sifier. However, the model for P(x) may be used for
example to derive a Fisher kernel, which may then be
used to obtain a classifier from the labelled or partially
labelled data (Hofmann, 2000; Goutte et al., 2004).

The log-likelihood Lo = >, In P(z(?) is maximised
using the EM algorithm. We call this version EMO.
The E-step equation is:

PO (a)P® (zD|a)
2o PO () PO (z]a)

For mixing parameters P(«), the M-step equation is:

-4z

The M-step equations for P(z|a) depend on the form
of the component distributions and are given in the
appendix for Gaussian mixtures. As this is an EM al-
gorithm, iterating the E- and M-step equations guar-
antees convergence to a (local) maximum of L.

C(a,i)=PW(alz) =

P(t+1) (2)

2.2. EM1 and EM2

The above probabilistic modelling, although simple, is
somewhat deficient, since it does not make use of all
available information, i.e. the labels available for part
of the data. Taking labels into account leads to the

log-likelihood

ZlnP(x(i)) + ZlnP(x( ), 2
ieU €L
Lo+ Z In P(z9]z®)

€L

Miller and Uyar (Miller & Uyar, 1997) propose two
versions of the EM algorithm that optimise the same
log-likelihood (eq. 3). Although they differ on which
latent variables are considered during EM, they both
optimise the same likelihood. The should therefore

yield very similar results, as exemplified in the exper-
imental section of (Miller & Uyar, 1997).

L,

3)

In EM1, the only unobserved variable for labelled and
unlabelled data is the component «. As this is a la-
tent variable model, the log-likelihood (eq. 3) is again



maximised using the EM algorithm. For unlabelled
data, the E-step equation is unchanged (see eq. 1).
For labelled data it becomes:

D (a, i)

PO (2@ 20))
P (a)p(t) (x(i) |a)p(t) (Z(i) )
Ea P®) (Q)P(t) (Qj(z) |Q)P(t) (z(l) |a)

(4)

Using this notation the M-step equations for P(«)
(and P(z|)) are the same as before (eq. 2), using the
new expression of C()(, i) for labelled examples. The
additional M-step equation needed for re-estimating
P(z|a) is:

Zieﬁ,z(i):z C(t) (O[, Z)

P(t+1)(2|a) = Z'GL C®O(a, i)

()

Again, EM convergence proofs guarantee that iterat-
ing the E- and M-step equations for EM-1 lead to a
(local) maximum of L;.

In EM2, the latent variables are the component « for
all data, as well as the label z for all the unlabelled
examples. Although the unobserved variable are dif-
ferent from EM-1, this is still a latent variable model.
Therefore, we again maximise the likelihood L using
EM. In the E-step, we need to estimate the expectation
of the joint observation of o and z for all unlabelled
examples ¢ € U:

B P®(a)P® (z()]a) P® (2 |a)/
X PO@PO@@])
C9(a, )PV (z])

P® (av, z|:v(i))

with C")(a, i) defined as in eq. 1, while for all labelled
examples i € L, the E-step equation is still as eq. 4.

Because Y. CM(a,i)PM(z|a) = C®(a,i), it turns
out that the M-step equations for P(a) and P(z|a)
are, again, unchanged. The only modification to
the M-step equations in this variant concerns P(z|a),
which now takes unlabelled data into account:

1

P(t+1)(z|a) :7Zi0(t)(a,i)

< [ >, i)PP(zla)+ > CP(a,i) [T)
e 5L,

Models are trained by iterating the E- and M-step
equations until convergence. Again, this is an EM al-
gorithm and therefore converges to a (local) maximum
of L;. In fact, because they maximise the same like-
lihood, EM1 and EM2 should yield similar models, as
exemplified in (Miller & Uyar, 1997).
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These models may then be used to provide posterior
class probabilities for unlabelled data:

P(z,2) _ Yo Pz|la)P(z|a)P(a)
P(x) 2o P(z[e)P(a)

P(z|z) = (8)

The unlabelled examples from the training data and
(when applicable) new examples may then be classified
on the basis of P(z|z).

2.3. Hard vs. Soft Partitioning

There are two ways to assign components to classes.
In hard partitioning, the assignment is binary, ie
P(z|a) = 1 if component « is associated with class
z and P(2'|a) = 0 for all other classes. In soft parti-
tioning, the assignment is probabilistic, ie each compo-
nent o potentially generates examples from all classes,
P(z|la) € [0,1]. It has been reported that soft par-
titioning yields better results than hard partitioning,
at least for balanced classes (Miller & Uyar, 1997).
However, it also potentially faces the problem of clus-
ter impurity, especially when classes are unbalanced.
This happens when all components contain examples
from several classes instead of “specialising” to one
or few classes. As an illustration, consider the model
shown in figure 1. Out of eight components, three are
associated almost exclusively with the largest class.
The rest generates varying proportions of all classes.
As a consequence, better modelling these components
using unlabelled data will not help the discrimination
task, which is to discriminate each class versus the oth-
ers. In such cases, the resulting generative model will
therefore have poor discriminative power.

One way to impose purity on the model is to use hard
partitioning of components to classes. It turns out that
hard partitioning is easy to implement by initialising
P(z|a) to binary (0/1) values and using the regular
EM equations (this is apparent by cycling through eq.
4, 6 and 5, 7). Note that for hard partitioning, EM-
1 and EM-2 are identical as P(z|a) is fixed: the class
label is uniquely determined by the component assign-
ment.

Situations where the ratio of labelled to unlabelled ex-
amples is very low pose an additional problem of re-
liability of the class assignments. In that situation, it
is likely that some components (which we will call un-
labelled components) will model only unlabelled data.
In this case, hard partitioning will “arbitrarily” assign
a class label to the component.! This assignment is

'Note that soft partitioning will also yield arbitrary
class probabilities in that case: eq. (7) becomes, in this
situation, P+ (z|a) = PY(z|a).
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Figure 1. The problem of component impurity. The
graph shows the composition of each component of an 8-
component mixture modelling four unbalanced classes with
soft partitioning. The largest class “takes over” most com-
ponents, and the smaller classes are not well represented
by components. As a consequence, the mixture model is
unlikely to yield helpful discriminative information.

arbitrary in the sense that it has no influence on the
likelihood. This in turn will lead the model to take
arbitrary decisions at classification time, and do so
with high confidence. In order to address this problem,
we need to take into account the composition of each
component in labelled and unlabelled examples. In the
next section we propose a new variant of EM that does
so in a principled way and addresses both problems of
cluster impurity and unlabelled components.

3. Improving classification confidence
with EM3

One way to deal with unbalance between labelled and
unlabelled data is to down-weight the unlabelled data
by introducing a multiplicative parameter A € [0,1]
in front of the unlabelled contribution in eq. 3 (or
7), as advocated for example in (Nigam et al., 2000).
This however does not solve our problem since un-
labelled components can still be present in the final
solution. In order to take into account the composi-
tion of each mixture component in a principled way,
we restore the symmetry between labelled and unla-
belled data by introducing an additional “label” for
unlabelled examples. In binary classification for exam-
ple, instead of having () € {+, =} for i € £, we now
have z() € {+,0,—} for all i € U. All observations
are pairs (z(V,2(V), and « is the only latent variable.
Table 1 gives an overview of the differences between
EMS3 and the other EM variants presented earlier (we
use square brackets to indicate partially observed data,
as z in EM1 or EM2, observed for labelled data only).
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Parameters are trained by maximising the log-
likelihood taking these new “labels” into account:

Z In Pz, 20))
i€D

Ly + ZlnP(az(i), z=0)
ieu

Ls
9)

Note that this likelihood is partially completed but
is still not the complete likelihood (for which « are
observed).

The model is still a latent variable model which we
again train using the EM algorithm. It turns out that
the E-step equation is identical to eq. 4 for all data,
and the M-step equations for P(a) and P(z|a) are
unchanged. The main difference is the re-estimation
formula for P(z|«), which a/ runs over all data and b/
has an additional value z = 0:

3 cD(a,i)

i€ED
2(1) =2

Y CW(a,i)

%

P (z]a) = (10)

As before, iterating the E- and M-step equations is an
EM algorithm and therefore guarantees convergence
to a (local) maximum of L.

Note that using EM3 with soft partitioning essentially
amounts to turning the semi-supervised learning prob-
lem into a supervised learning problem with one addi-
tional class. The situation is different with hard parti-
tioning because of a key difference: the hard partition-
ing constraint is imposed only on “true” labels, not on
the added “fake” label. Unlabelled data may there-
fore be distributed over all components. Despite this
difference, hard partitioning can still be implemented
using the appropriate initial conditions.

In EM3, unlabelled components retain the possibil-
ity to generate examples with the added “fake” label,
rather than be forced to generate an arbitrary label.
Once the model is trained using EM3, we use it to
classify unlabelled or new examples. The main issue is
to distribute the probability mass associated with the
“fake” z (P(z = 0|a)) onto the “real” labels. Using an
additional variable £ for the “real” labels, the posterior
probability of ¢ given an example x is obtained as:

ZZP(€|Z)P(Z|Q)P(Q|3:)
Z P(alz)P(z = o)

P(l|z)

(11)

+P(t]z=0)>_ P(alz)P(z = 0]a)



Observed Complete Log-Likelihood to maximise
EMO () @ o) Lo=>,;InP(z®)
EM1 | (29, [z0]) | (29,a®,[20]) | Ly = Lo+ 3, In P(2[zD)
EM2 | (2@, [z0]) | (2®,a®, 20) | L,
EM3 | (z®,z0) | (2®,a® 20)) | Ly=Li+3,,InP(z"]z®)

Table 1. Observed and completed examples, and associated log-likelihood for the different training methods considered

here. Square brackets indicate partial observations.
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Figure 2. Graphical models for EM0, EM1/2 and EM3.

where we have used the fact that P({ = +|z = —)
P({ = —|z=+) =0. The first term in eq. 11 may be
seen as the contribution from the labelled data, while
the second term is the contribution from the unlabelled
data. This corresponds to the graphical model in fig-
ure 2 (right), where for comparison we also present
the graphical models associated with EM0 and EM1/2
(these graphical models are slightly simplified to illus-
trate their differences).

P(¢|z = 0) represents a prior probability that an un-
labelled component generates examples from class /.
One possibility is P(¢|]z = 0) = 1/2, a uniform, non-
informative prior. Another possibility is to reflect
class priors. This may however lead to undesirable re-
sults. For example, a component «, associated with
the positive class, but containing lots of unlabelled
data will typically yield P(z = 0|a) > P(z = +|a).
If P(¢|z = 0) is biased towards the negative class, this
will lead to the counter-intuitive decision that exam-
ples from this positive component are classified as neg-
ative examples. . . We address this problem?, in a man-
ner similar to (Nigam et al., 2000), but applied at a
different level, namely the final categorization decision,
by down-weighting the influence of the unlabelled ex-
amples in the decision, by a factor A € [0, 1]:

P(l|x) = ZP(oz|x)P(z:€\a)

+AP({)z =0) Z P(a|z)P(z = 0]a)

2Al‘cernatively, we can use an improper prior on the
label generation, P({ = +|z =0) =Pl =—|z=0) = p <K
1. In the experiments, we use p = 0.01, which corresponds
to a uniform P(¢|z) with A = 0.02.
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Figure 3. Mixture discriminant analysis using the 9 la-
belled examples only.

4. Application to Mixture Discriminant
Analysis

As an illustration, we use a mixture of Gaussian with
hard partitioning to address a discriminant analysis
problem with very few labelled data. We use the Lep-
tograpsus crab data (See (Ripley, 1996)). It records
morphological features of 50 specimens of each sex of
each of two species of rock crab (orange or blue). Pro-
jected in the first two canonical variates as shown in
(Ripley, 1996, p.97), the examples are distributed in
4 groups of roughly equal sizes and shapes. In our
experiments, we randomly labelled 9 examples: 6 cor-
respond to male specimens (+ class) and 3 correspond
to female specimens (- class). All 3 females turn out to
belong to the orange species, such that there is no la-
belled example from the “blue female” group (bottom
left on the figures).

Using hard partitioning is quite similar to using miz-
ture discriminant analysis (MDA) (Hastie & Tibshi-
rani, 1996). Standard MDA essentially fits a mixture



MDA with unlabelled data MDA with unlabelled data (HP+EMS3)

Figure 4. Mixture discriminant analysis results using 2 components per class for EM1 (left) and EM3 (right). Color
shading indicates assignment probability: dark/red for intermediate probabilities, light/yellow for extreme probabilities.

MDA with unlabelled data (HP+EM1) MDA with unlabelled data (HP+EMS3)
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Figure 5. Mixture discriminant analysis results using 3 positive components and 1 negative component class for EM1 (left)
and EM3 (right). Color shading indicates assignment probability: dark/red for intermediate probabilities, light/yellow
for extreme probabilities.

of Gaussian on examples from each class, and uses the ces. Figure 3 shows the result of MDA when we use
resulting model to discriminate between the classes only the 9 labelled examples. Predictably, the model
(within the context of partially labelled data, hard estimates are fairly poor. The left part of the class
partitioning has the added twist that one estimates boundary seems somewhat arbitrary and cuts through
a global mixture model and takes unlabelled data into the blue female group. Taking unlabelled data into
account when estimating the mixture parameters). account yields a different picture. In both examples in
figure 4 we use hard partitioning, trained either with

T a first experiment, we fit an “ideal” mixture with 2 5" 6 o with EM3 (right). In the ideal setting of

components per class and common covariance matri-
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2 components per class, both methods correctly iden-
tify the boundary between the two classes. The main
difference is in the confidence of the two models. Be-
cause of the hard assignment of each component to
either class, the model obtained by EM1 displays a
very crisp boundary. In particular points in the blue
female (lower left) group are classified to the ’-’ class
with high confidence, ie P(z = —|z) =~ 1. However,
there are no labelled examples in this component, so
this outcome is essentially an artefact of the ideal set-
ting of 2 component per class, rather than a result of
the evidence in the data. The results from EM3 are
qualitatively different. For the three components with
labelled data, the correct labelling is identified. The
component corresponding to blue female is associated
to unlabelled data with almost 100% probability, thus,
from eq. 11, the assignment probability to either class
is about 50%, indicated by a darker (red) zone in fig-
ure 4, right. This shows that contrary to EM1, EM3
yields a model that does take into account the intrin-
sic uncertainty associated with a component with no
labelled examples.

This is further illustrated in figure 5, where we trained
a misspecified mixture model, with 3 positive compo-
nents and a single negative component. It is important
to notice that because only 3 components have associ-
ated labelled examples, the likelihoods for both struc-
ture (242 and 3+1) are essentially identical. There is
therefore no evidence in the data for choosing between
the two structures.®> With this misspecified model,
EM1 again produces a crisp decision boundary, this
time excluding the blue female group, and does so with
high confidence: P(z = +|z) ~ 1 in this group. On
the other hand, the model obtained by EM3 (right
panel in figure 5) yields similar results as before: the
three components with associated labelled examples
are well identified, while the last component has high
uncertainty (50-50 probability). Another way to look
at this is that there is no objective way, based on the
data, to know whether the discrimination task is “male
vs. female” or “orange female vs. rest”. The choice
between the two structures is therefore arbitrary, but it
has large consequences at classification time. In both
cases, about 25% of the test data may be misclassi-
fied; however, with EM3, the model does identify the
fact the the decision for the test examples in the blue
female category are intrinsically very uncertain. With
a cost that takes uncertainty into account (for exam-
ple negative log-likelihood on test examples), the EM3

3In particular, information criteria such as AIC, BIC,
etc. (Akaike, 1974; Schwartz, 1978) will not help since
both the likelihood and structure penalty are identical for
the two models.
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model will perform much better than the EM1 model
under misspecification.

5. Discussion

In this work, we have first reviewed several EM vari-
ants, including EM1 and EM2 proposed in (Miller
& Uyar, 1997), for training mixture models on par-
tially labelled data. This led us to identify two ma-
jor problems: cluster impurity and unlabelled compo-
nents. Cluster impurity can be solved by using hard
partitioning. Indeed, the performance we obtain with
soft partitioning is below what we observe with hard
partitioning. This is somewhat in contrast with the
findings of (Miller & Uyar, 1997), who report better
performance for soft partitioning. We attribute that
to a variant of the cluster impurity problem: for unbal-
anced datasets, the resulting soft partitioning models
have components for which P(z|a) is biased towards
the largest class. In EM-2, this effect is reinforced by
eq. 7, in which unlabelled examples dominate. As
most unlabelled examples are from the largest class,
components tend to be dominated by the largest class.

Unlabelled components, and more generally compo-
nents which display a low labelled/unlabelled ratio,
pose the additional problem of bringing little, and to a
certain extent unreliable, information, which is never-
theless used in the final categorization decision. Previ-
ous models failed to account for this fact. We showed
that, by introducing an additional fake label, it was
possible to “model” this uncertainty. As mentioned
before, this approach is similar to the down-weighting
factor for unlabelled data used in (Nigam et al., 2000).
One important difference between the two approaches,
however, is that (Nigam et al., 2000) down-weight the
unlabelled data at parameter estimation time, while in
our case we down-weight the unlabelled components
at discrimination time, in order to better model the
uncertainty associated with components with few or
no labelled examples. That situation is likely to arise
whenever there are very few labelled examples. There
are situations, however, where the two approaches cer-
tainly need be combined, a combination we plan to
investigate in the future.

6. Conclusion

In this paper, we provided a unifying treatment of sev-
eral strategies for training mixture models from par-
tially labelled data. We emphasized two major prob-
lems associated with the use of mixture models in this
setting: cluster impurity and unlabelled components.
This led us to develop a new model and associated EM



variant, EM3. We have showed, in particular, that this
new model led to a better treatment of the uncertainty
associated with components with few or no labelled
examples. These results confirm several experimen-
tal studies on the usefulness of combining labelled and
unlabelled data for training categorizers.
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A. M-step equations for P(z|«a)

For a Gaussian mixture:

Plala) o exp (~5 o = o) 7 (- )

The M-step re-estimation formulas are:

(t+1) _ Zic(t)(aai)w(i)
o = 7500 (@)

1 o (G i

204 = = (3700 (0, (@0 —p0) @ D)
For a multinomial mixture such as PLSA (Hofmann,
1999), x is a couple (f,e) and P(z|a) = P(f|a)P(e|a):
D iel=e CW(a, i)

>, C(a )
Zi,f(i):f ct (cv, )

22 CW(a,i)

P+ (ea) =

P (fla) =



