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Program

q Part I: Offline learning (Sep 25. – Nov. 7)
Massih-Reza Amini (LIG)

q Supervised Learning:
q Empirical Risk Minimization principle
q Quantitative Models for Machine Learning their link with

the ERM principle (+ mini-project)
q Unconstrained Convex Optimization
q Consistency of the ERM principle
q Timeline of Deep Learning
q Multi-class classification

q Unsupervised and semi-supervised learning
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Program1

q Part I: Offline learning (Sep 25. – Nov. 7)
Massih-Reza Amini (LIG)

q Supervised Learning:
q Empirical Risk Minimization principle
q Quantitative Models for Machine Learning their link with

the ERM principle (+ mini-project)
q Unconstrained Convex Optimization
q Consistency of the ERM principle
q Timeline of Deep Learning
q Multi-class classification

q Unsupervised and semi-supervised learning

1Program of Part I. based on Chapters 1, 2, 3 & 5 of [Amini 15]
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Program

q Part II: Online and Reinforcement learning
1. Adversarial bandits and online learning (Nov. 14 – 28)

Pierre Gaillard (Inria)
q Online prediction with expert advice
q Online convex optimization (+ mini-project)
q Adversarial bandits

2. Reinforcement learning (Dec. 5 – 19)
Nicolas Gast (Inria)

q Markov decision processes (+ mini-project)
q Classical RL algorithms
q ”Modern RL” (Deep RL, MCTS)
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Schedule at a glance

Grading: average of 3 mini-projects (30%) + average of two
exams (70%).
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What is Machine Learning?

q Wikipedia:Machine Learning is a field of computer science
that gives computers the ability to learn without being
explicitly programmrucuted for it!

q Machine Learning programs are hence designed to do
inference.
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What is Machine Learning?

q Wikipedia:Machine Learning is a field of computer science
that gives computers the ability to learn without being
explicitly programmrucuted for it!

q Machine Learning programs are hence designed to do
inference.
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Learning and Inference

The process of inference is done in three steps:
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Learning and Inference

The process of inference is done in three steps:

1. Observe a phenomenon
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Learning and Inference
The process of inference is done in three steps:

1. Observe a phenomenon
2. Construct a model of the phenomenon
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Learning and Inference

The process of inference is done in three steps:

1. Observe a phenomenon
2. Construct a model of the phenomenon
3. Do predictions
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Learning and Inference

These steps are involved in more or less all natural sciences!
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Learning and Inference

These steps are involved in more or less all natural sciences!

All that is necessary to reduce the whole
nature of laws similar to those which
Newton discovered with the aid of cal-
culus, is to have a sufficient number of
observations and a mathematics that is
complex enough.
(Marquis de Condorcet, 1785)

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


6

Learning and Inference
These steps are involved in more or less all natural sciences!

All that is necessary to reduce the whole
nature of laws similar to those which
Newton discovered with the aid of cal-
culus, is to have a sufficient number of
observations and a mathematics that is
complex enough. GPU that is powerful
enough.
(Marquis de Condorcet, 1785)
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Induction vs. deduction
q Induction is the process of deriving general principles from

particular facts or instances using mathematics.

People who wish to analyze na-
ture without using mathematics
must settle for a reduced under-
standing.
(Richard Feynman)

q Deduction is, in the other hand, the process of reasoning in
which a conclusion follows necessarily from the stated
premises; it is an inference by reasoning from the general to
the specific.
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Induction vs. deduction

q Induction is the process of deriving general principles from
particular facts or instances using mathematics.

q Deduction is, in the other hand, the process of reasoning in
which a conclusion follows necessarily from the stated
premises; it is an inference by reasoning from the general to
the specific.

This is how mathematicians prove theorems from axioms.
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Main Hypotheses

Two types of hypotheses:

q Past observations are related to the future ones
→ The phenomenon is stationary

q Observations are independently generated from a source
→ Notion of independence
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Some popular applications

Medicine

Image	recognition

Machine	Learning	for

Finance	and	buisness
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Three main Frameworks

?

Unsupervised LearningSupervised Learning

……
……
…

Sport

……
……
…

Politics

……
……
…

? ?

Semi-supervised Learning

……
……
…

Sport

……
……
…

Politics

All related to Inductive reasoning !
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Probabilistic model

Relations between the past and future observations.

q Independence: Each new observation provides a maximum
individual information,

q identically Distributed : Observations provide information
on the phenomenon which generates the observations.
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Formally

We consider an input space X ⊆ Rd and an output space Y.
Assumption: Example pairs (x, y) ∈ X × Y are identically and
independently distributed (i.i.d) with respect to an unknown
but fixed probability distribution D.

Samples: We observe a sequence of m pairs of examples (xi, yi)
generated i.i.d from D.

Aim: Construct a prediction function f : X → Y which predicts
an output y for a given new x with a minimum probability of
error.
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Notations

Symbol Definition
X ⊆ Rd Input space
Y Output space
S = (xi, yi)1≤i≤m Training set of size m
D Probability distribution generating the data (i.i.d)
ℓ : Y × Y → R+ Instantaneous loss
F = {f : X → Y} Class of functions
L(f) = E(x,y)∼D[ℓ(f(x), y)] Generalization error of
L̂m(f, S) or L̂(w) Empirical Loss of f over S
w Parameters of the prediction function
1π Indicator function equals 1 if π is true and 0 otherwise
Rm(F) Rademacher complexity of the class of functions F
R̂m(F , S) Empirical Rademacher complexity of F estimated over S
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Supervised Learning
q Discriminant models directly find a classification function
f : X → Y from a given class of functions F ;

q The function found should be the one having the lowest
probability of error

L(f) = E(x,y)∼D[ℓ(f(x), y)] =
∫
X×Y

ℓ(f(x), y)dD(x, y)

Where ℓ is an instantaneous loss defined as

ℓ : Y × Y → R+

The risk function considered in classification is usually the
misclassification error:

∀(x, y); ℓ(f(x), y) = 1f(x)̸=y

Where 1π is equal to 1 if the predicate π is true and 0
otherwise.
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Empirical risk minimization (ERM):
the 1st ML principle

q As the probability distribution D is unknown, the analytic
form of the true risk cannot be driven, so the prediction
function cannot be found directly on L(f).

q Empirical risk minimization (ERM) principle: Find f by
minimizing the unbiased estimator of its generalization
error L(f) on a given training set S = (xi, yi)m

i=1:

L̂m(f, S) = 1
m

m∑
i=1

ℓ(f(xi), yi)

q However, without restricting the class of functions this is
not the right way of proceeding (occam razor) ...
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Empirical Risk Minimization principle

q From a finite set of observations, called the training set,
constituted by the vector representation of examples and
their desired outputs

q Find a function that associates the vector representation of
an observation to its desired output, by minimizing the
empirical error of the function on the training set.

q This function is sought to make few errors on unseen
examples.
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Example
0.
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1.	Vecteur	de	
représentation

2.	Trouver	les	
séparateurs

3.
	N
ou

ve
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x	
ex
em

pl
es

5.	Prédire	les	étiquettes	
des	nouveaux	exemples
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Is Inference finally, interpolation?

In fact, it is always possible to construct a function that exactly
fits the data.
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Is Inference finally, interpolation?

In fact, it is always possible to construct a function that exactly
fits the data.

Simple model on train Complex model on train
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Is Inference finally, interpolation?

In fact, it is always possible to construct a function that exactly
fits the data.

Simple model on test Complex model on test
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Is Inference finally, interpolation?

In fact, it is always possible to construct a function that exactly
fits the data.

Simple model on test Complex model on test
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Is Inference finally, interpolation?
In fact, it is always possible to construct a function that exactly
fits the data.

Simple model on test Complex model on test

But inference is not just interpolation, as the aim is to predict
well on unseen examples!
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Occam razor

Idea: Take the most simplest model for searching
repetitions in the observed phenomenon and
do inference on new examples from the passed
ones ...

Simplicity is measured by ...

1. the number de parameters,
2. the number of constantes,
3. ...
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Occam razor
Idea: Take the most simplest model for searching
repetitions in the observed phenomenon and
do inference on new examples from the passed
ones ...

Simplicity is measured by ...

1. the number de parameters,
2. the number of constantes,
3. ...

This gives raise to the second principle in Machine Learning,
called Structural Risk Minimization, which states that learning
is a compromise between low empirical error and a high
capacity of interpolation.
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First attempts to build learnable artificial
models

It begun at the end of the 19th century
with the works of Santiago Ramón y Cajal
who first represented the biological neuron:

q Human brain contains about 86 billion neurons.
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MuCulloch & Pitts formal neuron (1943)

q Linear prediction function

hw : Rd → R
x 7→ ⟨w̄,x⟩+ w0

q Different learning rules have been proposed - the most
popular one was the Hebb’s rule (1949): neurons that fire
together, wire together.
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MuCulloch & Pitts formal neuron (1943)

q Linear prediction function
q Different learning rules have been proposed - the most

popular one was the Hebb’s rule (1949): neurons that fire
together, wire together.
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Perceptron [Rosenblatt, 1958]
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Perceptron [Rosenblatt, 1958]
q Linear prediction function

hw : Rd → R
x 7→ ⟨w̄,x⟩+ w0

q A principle way to learn: find the parameters w = (w̄, w0)
by minimising the distance between the misclassified
examples to the decision boundary.

w̄

h
w (x) =

⟨w̄
, x⟩ +

w
0 =

0
b

|hw(x)|
||w̄||

x

xp
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Learning Perceptron parameters
q Objective function for a misclassified example (xi′ , yi′)

ℓp(hw(xi′), yi′) = −yi′(⟨w̄,xi′⟩+ w0)

q Update rule: Gradient descente

∀t ≥ 1,w(t) ← w(t−1) − η∇w(t−1)ℓp(hw(t−1)(xi′), yi′)

q Derivatives of with respect to the parameters

∂ℓp(hw(xi′), yi′)
∂w0

= −yi′ ,

∇ℓp(hw(xi′), yi′) = −yi′xi′

q Stochastic gradient descente

∀(x, y), if y(⟨w̄,x⟩+ w0) ≤ 0 then
(
w0
w̄

)
←
(
w0
w̄

)
+ η

(
y
yx

)
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Graphical depiction of the online update rule

b (x1, +1)

b (x2, +1)
w(t)

rs (x3,−1)

rs(x4,−1)

b

b

w(t)

w(t+1)
−x3

rs

rs
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Perceptron (algorithm)

Algorithm 1 The algorithm of perceptron
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the weights w(0) ← 0
3: t← 0
4: Learning rate η > 0
5: repeat
6: Choose randomly an example (x(t), y(t)) ∈ S

7: if y
⟨

w(t), x(t)
⟩

< 0 then
8: w

(t+1)
0 ← w

(t)
0 + η × y(t)

9: w(t+1) ← w(t) + η × y(t) × x(t)

10: t← t + 1
11: end if
12: until t > T

+ Generic program that can be applied to any binary classification
problems (i.e. the Wikipedia definition of ML)

+ But does this program converge?
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Perceptron (convergence)
Theorem (Novikoff, 1962)
Let S = (xi, yi)1≤i≤m be a training set of size m; if there exists
a weight w̄∗, such that ∀i ∈ {1, . . . ,m}, yi × ⟨w̄∗,xi⟩ > 0, then,
by denoting ρ = mini∈{1,...,m}

(
yi

⟨
w̄∗

||w̄∗|| , xi

⟩)
, and,

R = maxi∈{1,...,m} ||xi||, and, w̄(0) = 0, η = 1, the number of
iterations k to find the hyperplan with normal vector w̄∗ that
separates the classes is bounded by :

k ≤
⌈(

R

ρ

)2
⌉
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ADAptive LInear NEuron
[Widrow & Hoff, 1960]

q Find parameters of the formal neuron by minimising the the
mean squared error

L̂(w) = 1
m

m∑
i=1

(yi − hw(xi))2

q Update rule : stochastic gradient descent algorithm with a
learning rate η > 0

∀(x, y),
(
w0
w̄

)
←
(
w0
w̄

)
+ η(y − hw(x))

(
1
x

)
(1)
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Adaline
q ADAptive LInear NEuron
q Linear prediction function :

hw : X → R
x 7→ ⟨w̄,x⟩+ w0

Algorithm 2 The algorithm of Adaline
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the weights w(0) ← 0
3: t← 0
4: Learning rate η > 0
5: repeat
6: Choose randomly an example (x(t), y(t)) ∈ S

7: w
(t+1)
0 ← w

(t)
0 + η × (y(t) − hw(x(t)))

8: w̄(t+1) ← w̄(t) + η × (y(t) − hw(x(t)))× x(t)

9: t← t + 1
10: until t > T
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Generative models for classification

Each example x is supposed to be generated by a mixture
model of parameters Θ:

P (x | Θ) =
K∑

k=1
P (y = k)P (x | y = k,Θ)

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


31

Generative models for classification

q The aim is then to find the parameters Θ for which the
model explains the best the observations,

q That is done by maximizing the complete log-likelihood of
data S = {(xi, yi); i ∈ {1, . . . ,m}}

L(S,Θ) = ln
m∏

i=1
P (xi, yi | Θ)

q Classical density functions are Gaussian density functions

P (x | y = k,Θ) = 1
(2π)

d
2 |Σk|

1
2
e−

1
2 (x−µk)⊤Σ−1

k
(x−µk)
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Generative models for classification

q Once the parameters Θ are estimated; the generative model
can be used for classification by applying the Bayes rule:

∀x; y∗ = argmax
k

P (y = k | x)

∝ argmax
k

P (y = k)× P (x | y = k,Θ)

q Problem: in most real life applications the distributional
assumption over data does not hold,
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Logistic Regression [Cox 58]

q The Logistic Regression model does not make any
assumption except that

ln P (y = 1 | x)
P (y = 0 | x)

= ⟨w̄,x⟩+ w0 = hw(x)

q The logistic regression has been proposed to model the
posterior probability of classes via logistic functions.

P (y | x) = (σ(hw(x)))y(1− σ(hw(x)))1−y
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Logistic Regression
q where

σ : R → ]0, 1[

z 7→ 1
1 + e−z

with the derivative:

σ′(z) = ∂σ

∂z
= σ(z)(1− σ(z))

q Model parameters w are found by maximizing the
complete log-liklihood, which by assuming that m training
examples are generated independently, writes

ln
m∏

i=1
P (xi, yi | Θ,w) = ln

m∏
i=1

P (yi | xi,w) + ln
m∏

i=1
P (xi | Θ)

≈
m∑

i=1
ln
[
(σ(hw(xi)))yi(1− σ(hw(xi))1−yi

]
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Logistic Regression : link with the ERM
principle

q The maximization of the log-liklihood L is equivalent to
the minimization of the empirical logistic loss in the case
where ∀i, yi ∈ {−1,+1}.

L̂(w) = 1
m

m∑
i=1

ln(1 + e−yihw(xi))

q Update rule using stochastic gradient descent algorithm
with a learning rate η > 0

∀(x, y),
(
w0
w̄

)
←
(
w0
w̄

)
+ ηy(1− σ(hw(x)))

(
1
x

)
(2)
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Logistic Regression

q Linear prediction function :

hw : X → R
x 7→ ⟨w̄,x⟩+ w0

Algorithm 3 The algorithm of Logistic Regression
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the weights w(0) ← 0
3: t← 0
4: Learning rate η > 0
5: repeat
6: Choose randomly an example (x(t), y(t)) ∈ S

7: w
(t+1)
0 ← w

(t)
0 + η × y(t)(1− σ(hw(t) (x(t))))

8: w̄(t+1) ← w̄(t) + η × y(t)(1− σ(hw(t) (x(t))))× x(t)

9: t← t + 1
10: until t > T
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Formal models

q Update rule

∀(x, y),
(
w0
w̄

)
←
(
w0
w̄

)
+ ηκ(x, y)

(
1
x

)
(3)

Model Perceptron Adaline Logistic Regression
κ(x, y) y1yhw(x)⩽0 (y − hw(x)) y(1− σ(hw(x)))
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Perceptron vs Adaline
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Adaline vs Logistic regression
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Perceptron, Adaline & LR sparked excitement
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Perceptron, Adaline & LR sparked excitement but

q Linearly separable problems are few
q Elementary learning problems need complex circuits (XOR,

parity, etc.)
q Learning deep circuits means solving the credit assignment

pb
q Circuit theory is poorly known
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The 1st winter of NNs
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The 1st winter of NNs

q This marked the 1st winter of NN;
⇒ Abandon Perceptrons and other analog models,

q Develop symbolic computers and Symbolic AI techniques
and,

q The search for non-linear models
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Neural Networks (1985)
q Solving non-linear problems by combining linear neurons:

XOR problem
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Neural Networks

q A Neural Network is an oriented weighted graph of formal
neurons,

q When two neurons are connected (linked by an oriented
edge of the graph), the output of the head neuron is used
as an input by the tail neuron

q Three neurons are considered :
q input neurons (connected with the input)
q output neurons
q hidden neurons
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MultiLayer Perceptrons (MLP)
q Multi-Layer Perceptron is an acyclic Neural Network,

where the neurons are structured in successive layers,
beginning by an input layer and finishing with an output
layer.

x0

x1

xd

x

In
pu

t

zℓ

z0

z1

y1

yk

Hidden
layer

bias
bias

y

O
ut

pu
t
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MLP
For the model above, the value of jth unit of the hidden layer
for an observation x = (xi)i=1...d in input is obtained by
composition :

q of a dot product aj , between x and the weight vector
w

(1)
j. = (w(1)

ji )i=1,...,d; j ∈ {1, . . . , ℓ} the features of x to this
jth unit and the parameters of the bias w(1)

j0 :

∀j ∈ {1, . . . , ℓ}, aj = ⟨w(1)
j. ,x⟩+ w

(1)
j0

=
d∑

i=0
w

(1)
ji xi

q and a bounded transfert function, H̄(.) : R → R :

∀j ∈ {1, . . . , ℓ}, zj = H̄(aj)
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MLP

For the model above, the value of jth unit of the hidden layer
for an observation x = (xi)i=1...d in input is obtained by
composition :

q The values of units of the output (h1, . . . , hK) is obtained
in the same manner between the vector of the hidden layer
zj , j ∈ {0, . . . , ℓ} and the weights linking this layer to the
output w

(2)
k. = (w(2)

kj )j=1,...,ℓ; k ∈ {1, . . . ,K},
q the predicted output for an observation x is a composite

transformation of the input, which for the previous model is

∀x, ∀k ∈ {1, . . . , K}, h(x, k) = H̄(ak) = H̄

(
ℓ∑

j=0

w
(2)
kj × H̄

(
d∑

i=0

w
(1)
ji × xi

))
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MLP
q An efficient way to estimate the parameters of NNs is the

backpropagation algorithm [Rumelhart et al., 1986],
q For the mono-label classification case, an indicator vector is

associated to each class

∀(x, y) ∈ X×Y, y = k ⇔ y⊤ =

y1, . . . , yk−1︸ ︷︷ ︸
all equal to 0

, yk︸︷︷︸
=1

, yk+1, . . . , yK︸ ︷︷ ︸
all equal to 0


q After the phase of propagation of information for an

example (x, y), an error is estimated between the
prediction and the desired output, for example:

∀(x,y), ℓ(h(x),y) = −
K∑

k=1
yk log hk
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MLP
q And the weights are corrected accordingly from the output

to the input using the gradient descent algorithm

wji ← wji − η
∂ℓ(h(x),y)

∂wji

q Using the chain rule
∂ℓ(h(x),y)

∂wji
= ∂ℓ(h(x),y)

∂aj︸ ︷︷ ︸
=δj

∂aj

∂wji

where ∂aj

∂wji
= zi.

q In the case where, the unit j is on the output layer we have

δj = ∂ℓ(h(x),y)
∂aj

= −yj
H̄ ′(aj)
H̄(aj)
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MLP

q If the unit j is on the hidden layer, we have by applying
the chain rule again :

δj = ∂ℓ(h(x),y)
∂aj

=
∑

l∈Af(j)

∂ℓ(h(x),y)
∂al

∂al

aj

= H̄ ′(aj)
∑

l∈Af(j)
δl × wlj

where Af(j) is the set of units that are on the layer which
succeeds the one containing unit j.
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Backpropagation [Hinton & Rumelhart, 1986]
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MLP with L hidden layers - pseudocode

Algorithm 4 MLP
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the weights Wℓ = [wℓ

ji]i,j ; ℓ ∈ {1, . . . , L + 1}
▷ Layer 0 is the input, Layer L + 1 is the output

3: Learning rate η > 0
4: repeat
5: Choose randomly an example (x, y) ∈ S ▷, x = z0

▷ Propagation phase
∀ℓ ∈ {1, . . . , L + 1}, ∀j ∈ {1, . . . , dℓ}; aℓ

j =
∑dℓ−1

i=1
wℓ

jizℓ−1
i

and zℓ
j = H(aℓ

j )
▷ Retropropagation phase - estimation of δ

∀j ∈ {1, . . . , K}; δL+1
j

= −yj

H′(a
L+1
j

)

H(a
L+1
j

)

∀ℓ ∈ {L, . . . , 1}, ∀j ∈ {1, . . . , dℓ}; δℓ
j = H′(aℓ

j )
∑dℓ+1

s=1
δℓ+1

s wℓ+1
sj

▷ Retropropagation phase - update of the weights
∀ℓ ∈ {1, . . . , L + 1}, ∀i ∈ {1, . . . , dℓ}, ∀j ∈ {1, . . . , dℓ)}; wℓ

ji = wℓ
ji − η × δℓ

j zℓ
i

6: until t > T
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MLP with a hidden layer is a universal
approximator

Theorem (Cybenko, Hornik & Funahashi)

For any continuous function f on compact subsets of Rd. For
any admissible activation non-polynomial function H̄; there
exists h; W1 ∈ Rd×h, b ∈ Rh, c ∈ R and w2 ∈ Rh such that

∀ϵ > 0, ∀x ∈ Rd; ∥f(x)− w2H̄(W1x + b) + c∥∞ ≤ ϵ
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A Convolutional NN for image recognition
[LeCun, 1997]
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ADAptive BOOSTing [Schapire, 1999]

q The Adaboost algorithm generates a set of weak learners and
combines them with a majority vote in order to produce an
efficient final classifier.

q Each weak classifier is trained sequentially in the way to take
into account the classification errors of the previous classifier

+ This is done by assigning weights to training examples and at
each iteration to increase the weights of those on which the
current classifier makes misclassification.

+ In this way the new classifier is focalized on hard examples that
have been misclassified by the previous classifier.
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AdaBoost, algorithm
Algorithm 5 The algorithm of Boosting

1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the initial distribution over examples ∀i ∈ {1, . . . , m}, D1(i) = 1

m

3: T , the maximum number of iterations (or classifiers to be combined)
4: for each t=1,…,T do
5: Train a weak classifier ft : X → {−1, +1} by using the distribution Dt

6: Set ϵt =
∑

i:ft(xi )̸=yi
Dt(i)

7: Choose αt = 1
2 ln 1−ϵt

ϵt

8: Update the distribution of weights

∀i ∈ {1, . . . , m}, Dt+1(i) =
Dt(i)e−αtyift(xi)

Zt

Where,

Zt =

m∑
i=1

Dt(i)e
−αtyift(xi)

9: end for each

10: The final classifier: ∀x, F (x) = sign
(∑T

t=1
αtft(x)

)
source: http://ama.liglab.fr/~amini/RankBoost/
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AdaBoost, algorithm
Algorithm 6 The algorithm of Boosting

1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: Initialize the initial distribution over examples ∀i ∈ {1, . . . , m}, D1(i) = 1

m

3: T , the maximum number of iterations (or classifiers to be combined)
4: for each t=1,…,T do
5: Train a weak classifier ft : X → {−1, +1} by using the distribution Dt

6: Set ϵt =
∑

i:ft(xi )̸=yi
Dt(i)

7: Choose αt = 1
2 ln 1−ϵt

ϵt

8: Update the distribution of weights

∀i ∈ {1, . . . , m}, Dt+1(i) =
Dt(i)e−αtyift(xi)

Zt

Where,

Zt =

m∑
i=1

Dt(i)e
−αtyift(xi)

9: end for each

10: The final classifier: ∀x, F (x) = sign
(∑T

t=1
αtft(x)

)
source: http://ama.liglab.fr/~amini/RankBoost/
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How to sample using a distribution Dt

bV

Dt(U)

M

b

U

q Choose randomly an index U ∈ {1, . . . ,m} and a real-value
V ∈ [0,maxi∈{1,...,m}Dt(i)], if Dt(U) > V then accept the
example (xU , yU ).
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AdaBoost, geometry interpretation

b

b

b

b

bb

rsrs

rs

rsrs

α1 = 0.5

b

b

b

b

bb

rsrs

rs

rsrs

α2 = 0.1

b

b

b

b

bb

rsrs

rs

rsrs

α3 = 0.75

b

b

b

b

bb

rsrs

rs

rsrs

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


Consistency of the ERM principle



59

Consistency of the ERM principle (1)
Suppose that the input dimension is d = 1, let the input space
X be the interval [a, b] ⊂ R where a and b are real values such
that a < b, and suppose that the output space is {−1,+1}.
Moreover, suppose that the distribution D generating the
examples (x, y) is an uniform distribution over [a, b]× {−1}.
Consider now, a learning algorithm which minimizes the
empirical risk by choosing a function in the function class
F = {f : [a, b]→ {−1,+1}} (also denoted as F = {−1,+1}[a,b])
in the following way ; after reviewing a training set
S = {(x1, y1), . . . , (xm, ym)} the algorithm outputs the
prediction function fS such that

fS(x) =
{
−1, if x ∈ {x1, . . . ,xm}
+1, otherwise
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Consistency of the ERM principle (2)

q For the above problem, the found classifier has an
empirical risk equal to 0, and that for any given training
set. However, as the classifier makes an error over the
entire infinite set [a, b] except on a finite training set (of
measure zero), its generalization error is always equal to 1.

q So the question is : in which case the ERM principle is
likely to generate a general learning rule?
⇒ The answer of this question lies in a statistical notion
called consistency.
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Consistency of the ERM principle (3)
This concept indicates two conditions that a learning algorithm
has to fulfill, namely

(a) the algorithm must return a prediction function whose
empirical error reflects its generalization error when the
size of the training set tends to infinity :
∀ϵ > 0, lim

m→∞
P(|L̂m(fS , S)− L(fS)| > ϵ) = 0, denoted as,

L̂m(fS , S) P→ L(fS)

(b) in the asymptotic case, the algorithm must allow to find
the function which minimizes the generalization error in
the considered function class :

L̂m(fS , S) P→ inf
g∈F
L(g)
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Consistency of the ERM principle (4)

These two conditions imply that the empirical error L̂m(fS , S)
of the prediction function found by the learning algorithm over
a training S, fS , converges in probability to its generalization
error L(fS) and infg∈F L(g) :

Empirical risk,	

True risk,	
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Consistency of the ERM principle: A worse case
study

The fundamental result of the learning theory [Vapnik 88,
theorem 2.1, p.38] concerning the consistency of the ERM
principle, exhibits another relation involving the supremum over
the function class in the form of an unilateral uniform
convergence and which stipulates that :

The ERM principle is consistent if and only if :

∀ϵ > 0, lim
m→∞

P
(

sup
f∈F

[
L(f)− L̂m(f, S)

]
> ϵ

)
= 0
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A uniform generalization error bound (1)

1. Link the supremum of L(f)− L̂m(f, S) on F with its
expectation

consider the following function

Φ : S 7→ sup
f∈F

[L(f)− L̂m(f, S)]

Let (x′, y′) an example generated i.i.d. from the same
probability distribution D that generated S; and let
∀i ∈ {1, . . . ,m}Si = S \ {(xi, yi)} ∪ {(x′, y′)} then we have

∀i ∈ {1, . . . ,m}; |Φ(S)− Φ(Si)| ≤ 1
m
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A uniform generalization error bound (1)
Theorem ([McDiarmid 89])

Let I ⊂ R be a real valued interval, and (X1, ..., Xm), m
independent random variables taking values in Im. Let
Φ : Im → R be defined such that : ∀i ∈ {1, ...,m},∃ci ∈ R the
following inequality holds for any (x1, ...,xm) ∈ Im and ∀x′ ∈ I :

|Φ(x1, ..,xi−1,xi,xi+1, ..,xm)−Φ(x1, ..,xi−1,x′,xi+1, ..,xm)| ≤ ci

We have then

∀ϵ > 0,P(Φ(x1, ...,xm)− E[Φ] > ϵ) ≤ e
−2ϵ2∑m

i=1 c2
i
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A uniform generalization error bound (1)

1. Link the supremum of L(f)− L̂m(f, S) on F with its
expectation

consider the following function

Φ : S 7→ sup
f∈F

[L(f)− L̂m(f, S)]

Mcdiarmid inequality can then be applied for the function Φ
with ci = 1/m,∀i, thus :

∀ϵ > 0,P

(
sup
f∈F

[L(f)− L̂m(f, S)]− ES sup
f∈F

[L(f)− L̂m(f, S)] > ϵ

)
≤ e−2mϵ2
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A uniform generalization error bound (2)
2. Bound ES sup

f∈F
[L(f)− L̂m(f, S)] with respect to Rm(ℓ ◦ F)

This step is a symmetrisation step and it consists in introducing
a second virtual sample S′ also generated i.i.d. with respect to
Dm into ES supf∈F [L(f)− L̂m(f, S)].

→ ES sup
f∈F

(L(f)− L̂m(f, S)) = ES sup
f∈F

[ES′(L̂m(f, S′)− L̂m(f, S))]

≤ ESES′ sup
f∈F

[L̂m(f, S′)− L̂m(f, S)]

→ In the other hand,

ESES′ sup
f∈F

[L̂m(f, S′)− L̂m(f, S)]

= ESES′Eσ sup
f∈F

[
1
m

m∑
i=1

σi(ℓ(f(x′
i), y′

i)− ℓ(f(xi), yi))

]
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A uniform generalization error bound (2)
2. Bound ES sup

f∈F
[L(f)− L̂m(f, S)]

By applying the triangular inequality sup = ||.||∞ it comes

ESES′Eσ sup
f∈F

[
1
m

m∑
i=1

σi(ℓ(f(x′
i), y′

i)− ℓ(f(xi), yi))

]
≤

ESES′Eσ sup
f∈F

1
m

m∑
i=1

σiℓ(f(x′
i), y′

i) + ESES′Eσ sup
f∈F

1
m

m∑
i=1

(−σi)ℓ(f(x′
i), y′

i)

Finally as ∀i, σi and −σi have the same distribution we have

ESES′ sup
f∈F

[L̂m(f, S′)− L̂m(f, S)] ≤ 2ESEσ sup
f∈F

1
m

m∑
i=1

σiℓ(f(xi), yi)︸ ︷︷ ︸
Relates to the complexity of F

(4)
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Rademacher complexity [Koltchinskii 01]

q In the derivation of uniform generalization error bounds
different capacity measures of the class of functions have
been proposed. Among which the Rademacher complexity
allows an accurate estimates of the capacity of a class of
functions and it is dependent to the training sample

q The empirical Rademacher complexity estimates the
richness of a function class F by measuring the degree to
which the latter is able fit to random noise on a training
set S = {(x1, y1), . . . , (xm, ym)} of size m generated i.i.d.
with respect to a probability distribution D.

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


70

Rademacher complexity [Koltchinskii 01]
q This complexity is estimated through Rademacher

variables σ = (σ1, . . . , σm)⊤ which are independent discrete
random variables taking values in {−1,+1} with the same
probability 1/2, i.e.
∀i ∈ {1, . . . ,m};P(σi = −1) = P(σi = +1) = 1/2, and is
defined as :

R̂m(F , S) = 2
m
Eσ

[
sup
f∈F

∣∣∣∣∣
m∑

i=1
σif(xi)

∣∣∣∣∣ | x1, . . . ,xm

]

q Furthermore, we define the Rademacher complexity of the
class of functions F independently to a given training set
by

Rm(F) = ES∼DmR̂m(F , S) = 2
m
ESσ

[
sup
f∈F

∣∣∣∣∣
m∑

i=1
σif(xi)

∣∣∣∣∣
]
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A uniform generalization error bound (2)
2. Bound ES sup

f∈F
[L(f)− L̂m(f, S)]

By applying the triangular inequality sup = ||.||∞ it comes

ESES′Eσ sup
f∈F

[
1
m

m∑
i=1

σi(ℓ(f(x′
i), y′

i)− ℓ(f(xi), yi))

]
≤

ESES′Eσ sup
f∈F

1
m

m∑
i=1

σiℓ(f(x′
i), y′

i) + ESES′Eσ sup
f∈F

1
m

m∑
i=1

(−σi)ℓ(f(x′
i), y′

i)

Finally as ∀i, σi and −σi have the same distribution we have

ESES′ sup
f∈F

[L̂m(f, S′)− L̂m(f, S)] ≤ 2ESEσ sup
f∈F

1
m

m∑
i=1

σiℓ(f(xi), yi)︸ ︷︷ ︸
≤Rm(ℓ◦F)

(5)
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A uniform generalization error bound (2)

2. Bound ES sup
f∈F

[L(f)− L̂m(f, S)] with respect to Rm(ℓ ◦ F)

In summarizing the results obtained so far, we have:
1. ∀f ∈ F ,∀S,L(f)− L̂m(f, S) ≤ supf∈F [L(f)− L̂m(f, S)]

2. ∀ϵ > 0,P

(
sup
f∈F

[L(f)− L̂m(f, S)]− ES sup
f∈F

[L(f)− L̂m(f, S)] > ϵ

)
≤

e−2mϵ2

3. ES sup
f∈F

(L(f)− L̂m(f, S)) ≤ Rm(ℓ ◦ F)

By resolving the equation e−2mϵ2 = δ with respect to ϵ we hance
get the following Theorem.
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A uniform generalization error bound

Theorem (Rademacher Generalization bounds)

Let X ∈ Rd be a vectorial space and Y = {−1, +1} an output space. Suppose
that the pairs of examples (x, y) ∈ X × Y are generated i.i.d. with respect to
the distribution probability D. Let F be a class of functions having values in
Y and ℓ : Y × Y → [0, 1] a given instantaneous loss. Then for all δ ∈]0, 1],
we have with probability at least 1 − δ the following inequality :

∀f ∈ F , L(f) ≤ L̂m(f, S) + Rm(ℓ ◦ F) +

√
ln 1

δ

2m
(6)

Using the same steps we can also show that with probability at least 1 − δ

L(f) ≤ L̂m(f, S) + R̂m(ℓ ◦ F , S) + 3

√
ln 2

δ

2m
(7)

Where ℓ ◦ F = {(x, y) 7→ ℓ(f(x), y) | f ∈ F}.
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Structural Risk Minimization

Learning is a compromise between low empirical error and high
complexity of the class of functions in use.
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Regularization for SRM

q Find a predictor by minimising the empirical risk with an
added penalty for the size of the model,

q A simple approach consists in choosing a large class of
functions F and to define on F a regularizer, typically a
norm || g ||, then to minimize the regularized empirical risk

f̂ = argmin
f∈F

L̂m(f, S) + γ︸︷︷︸
hyperparameter

× || f ||2

q The hyper parameter, or the regularisation parameter
allows to choose the right trade-off between fit and
complexity.
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Estimating hyperparameters with
cross validation

q Create a K-fold partition of the dataset
q For each of K experiments, use K − 1 folds for training and

a different fold for testing, this procedure is illustrated in
the following figure for K = 4

Train 1, 1 

Train 2, 2 

Train 3, 3 

Train 4, 4 

 Test 1 

 Test 2 

 Test 3 

 Test 4 

Crossval. 1 

Crossval. 2 

Crossval. 3 

Crossval. 4 

q The value of the hyper parameter corresponds to the value
of γk for which the testing performance is the highest on
one of the folds.
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Support Vector Machines [Boser et al. 92]

q Developed from Statistical Learning Theory mainly due to
(Chervonenski & Vapnik).

q Many researchers from different communities (ML,
Optimization, Statistics, etc.) work on them

”Nothing is more practical than a good theory.”
V. Vapnik

⇒ A new way of developing learning models.
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Support Vector Machines [Boser et al. 92]

Linearly separable case,
learning objective:

max
w

2
∥w∥

s.t.

⟨w̄, x⟩+ w0 ≥ 1, ∀x of class
⟨w̄, x⟩+ w0 ≤ −1, ∀x of class □
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SVM (linearly separable case)

q The objective is equivalent to:

min
w

∥w∥2

2
(8)

s.t. yi(⟨w,xi⟩+ w0) ≥ 1,∀xi

q Which is equivalent to the minimization of the following
objective function

L(w) = 1
m

m∑
i=1
⌊1− yi(⟨w,xi⟩+ w0)⌋+ + λ

∥w∥2

2

where ⌊x⌋+ = x if x > 0 and 0 otherwise. ⌊1− yihw(xi)⌋+,
is called the Hinge loss.
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Solving SVMs
q Different approaches have been proposed for solving the

minimization problem, among which Primal Estimated
sub-Gradient SOlver for SVM [Shalev, 2011] is one of the
principle ones.

Algorithm 7 PEGaSOS

1: Input: Training set S = (xi, yi)1≤i≤m, constant λ > 0 and
maximum number of iterations T

2: Initialize: Set w(1) ← 0
3: for each t = 1, 2, ..., T do
4: Set S+

t = {(x, y) ∈ S; y⟨w(t),x⟩ < 1}
5: Set ηt = 1

λt

6: Update w(t+1) ← (1− ληt)w(t) + ηt

m

∑
(x,y)∈S+

t
yx

7: end for each
8: Output: w(T +1)
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SVM (linearly separable case)
q The resolution of (8) can also be done through the Lagrangian:

Lp(w) = ∥w∥
2

2
+

m∑
i=1

αi(1− yi(⟨w,xi⟩+ w0))

q The solution w∗ of the optimization problem should verify
are called Karush–Kuhn–Tucker conditions which are
obtained by setting to zero the gradient of the Lagrangian
and by writing the complementary conditions :

∇Lp(w̄∗) = w̄∗ −
m∑

i=1
αiyixi = 0,⇔ w̄∗ =

m∑
i=1

αiyixi (9)

∇Lp(w∗0) = −
m∑

i=1
αiyi = 0, ⇔

m∑
i=1

αiyi = 0 (10)

∀i, αi
[
yi(
⟨
w̄∗,xi

⟩
+ w∗0)− 1

]
= 0, so

{
αi = 0, or
yi(
⟨
w̄∗,xi

⟩
+ w∗0) = 1

(11)
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SVM (linearly separable case)
By plugging back (9) et (10) to the primal objectif we get :

Lp = 1
2

∥∥∥∥∥
m∑

i=1
αiyixi

∥∥∥∥∥
2

−
m∑

i=1

m∑
j=1

αiαjyiyj⟨xi,xj⟩ − w∗0
m∑

i=1
αiyi︸ ︷︷ ︸

=0

+
m∑

i=1
αi

= −1
2

m∑
i=1

m∑
j=1

yiyjαiαj⟨xi,xj⟩+
m∑

i=1
αi

we obtain the dual optimization problem known as dual of
Wolfe :

max
(α1,...,αm)∈Rm

m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

yiyjαiαj⟨xi,xj⟩ (12)

u.c.
m∑

i=1
yiαi = 0 and ∀i, αi ≥ 0 (13)
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SVM, the kernel trick

q The resolution of the dual optimization problem requires the knowing
of the similarity between training examples ∀i, j; ⟨xi, xj⟩.

q The similarity measured by dot product can also be expressed by a
kernel function κ : X × X → R+ which may depend on a mapping of
ϕ : X 7→ X ϕ that transforms the input space into a higher-dimensional
space, called the feature space; i.e.

κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ϕ

In general κ is a real-valued positive definite function, whose
expression is fixed. For example:

κ(x, x′) = (x⊤x′ + c)n, c ∈ R∗
+; n ∈ N∗ polynomial kernel

κ(x, x′) = exp(− ∥x−x′∥2

2σ2 ) Gaussian radial basis function

q The substitution of dot product by a kernel function is referred to as
the kernel trick.
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Algorithm 8 SVM Hard Margin
1: Training set S = ((x1, y1), ..., (xm, ym))
2: Find α∗, solution of the optimization problem

max
α∈Rm

m∑
i=1

αi −
1
2

m∑
i=1

m∑
j=1

yiyjαiαjκ(xi,xj)

u.c.
m∑

i=1
yiαi = 0 and ∀i, αi ≥ 0

3: Choose i ∈ {1, . . . ,m} such that α∗i > 0

4: Let w∗0 = yi −
m∑

j=1
α∗jyjκ(xj ,xi)

5: w̄∗ =
m∑

i=1
yiα
∗
iϕ(xi)

6: Output; ∀x, f(x) = sgn
(

m∑
i=1

yiα
∗
i κ(xi,x) + w∗0

)
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SVM (non-linearly separable case)

⟨w̄
, ϕ(x)⟩+

w
0 = 0

⟨w̄
, ϕ(x)⟩+

w
0 = +1

⟨w̄
, ϕ(x)⟩+

w
0 = −1

b

b

b

b

b

b

b

b

rsrs

rs

rs

rs

rs
rs

rs

b

ξ
||w̄||
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SVM (non-linearly separable case)

q The idea is that by mapping the training data using ϕ is
that training examples will become linearly separable in
the higher-dimensional feature space.
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SVM (non-linearly separable case)
q In this case, the optimization problem in the feature space

writes
∀i, ξi ≥ 0

∀xi ∈ S+, ⟨w̄, ϕ(xi)⟩ + w0 ≥ 1 − ξi

∀xi ∈ S−, ⟨w̄, ϕ(xi)⟩ + w0 ≤ −1 + ξi

q

min
w̄∈H,w0∈R,ξ∈Rm

1
2
||w̄||2 + C

m∑
i=1

ξi

u.c. ∀i, ξi ≥ 0 et yi(⟨w̄, ϕ(xi)⟩+ w0) ≥ 1− ξi

q The Lagrangian formulation

Lp(w̄, w0, ξ, α, β)=
1
2
∥w̄∥2+C

m∑
i=1

ξi−
m∑

i=1

αi[yi(⟨ϕ(xi), w̄⟩+w0)−1+ξi]−
m∑

i=1

βiξi
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SVM: soft margin
q The Lagrangian formulation

∇Lp(w̄∗) = w̄∗ −
m∑

i=1

αiyiϕ(xi) = 0, i.e. w̄∗ =
m∑

i=1

αiyiϕ(xi)

∇Lp(w∗
0) = −

m∑
i=1

αiyi = 0, i.e.
m∑

i=1

αiyi = 0

∇Lp(ξ∗) = C × 1m − α− β = 0, i.e. ∀i, C = αi + βi

∀i, αi [yihw∗ (xi)− 1 + ξ∗
i ] = 0, i.e. αi = 0 or yihw∗ (xi) = 1− ξ∗

i

∀i, βiξ
∗
i = 0, i.e. βi = 0 or ξ∗

i = 0

q That to say

Lp =
1
2

∥∥∥∥∥
m∑

i=1

αiyiϕ(xi)

∥∥∥∥∥
2

−
m∑

i=1

m∑
j=1

αiαjyiyjκ(xi, xj)− w0

m∑
i=1

αiyi︸ ︷︷ ︸
=0

+
m∑

i=1

αi

= −
1
2

m∑
i=1

m∑
j=1

yiyjαiαjκ(xi, xj) +
m∑

i=1

αi
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SVM: soft margin

q We get the same dual form than for the linearly separable case

max
(α1,...,αm)∈Rm

m∑
i=1

αi − 1
2

m∑
i=1

m∑
j=1

yiyjαiαjκ(xi, xj)

u.c.
m∑

i=1

yiαi = 0 et ∀i, 0 ≤ αi ≤ C

q With the only difference that 0 ≤ αi ≤ C

q Using the kernel trick, the resolution of the optimization problem
requires only the expression of the kernel function κ without explicitly
knowing the mapping ϕ.

q Many free implementations, see http://www.kernel-machines.org
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Universal approximation capability of SVMs

Theorem (Hammer & Gersmann (2001))
SVMs with standard kernels κ : X × X → R (including
Gaussian, polynomial, and several dot product kernels) learned
over a training set S = (xi, yi)1≤i≤m can approximate any
continuous function f on compact subsets of Rd up to any
desired precision ϵ ∈ R∗+

∀ϵ > 0;∀x ∈ Rd;
∥∥∥∥∥f(x)−

(
m∑

i=1
yiα
∗
i κ(xi,x) + w∗0

)∥∥∥∥∥
∞

≤ ϵ

q For a given learning problem research were mainly focused
on finding adapted feature characteristics and kernel
functions and use SVMs for prediction.
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The Caltech 101 database (2004)

q 101 classes, 30 training images per class ⇒ SVMs were the
winner !

⇒ This marked the 2nd winter of NNs, SVM became the most
popular learning algorithms.
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The ImageNet database (Deng et al., 2009)

q 15 million high resolution images belonging to 22,000
classes.

q Large-Scale Visual Recognition Challenge (a subset of
ImageNet - http://image-net.org/challenges/LSVRC/2010/)

q 1000 classes,
q 1.2 millions training images,
q 50,000 validation images,
q 150,000 test images.
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SVMs at LSVRC 2010 & 2011

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


On the convergence of
the Gradient Descent algorithm
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Convex upper bounds of the misclassification error

−3 −2 −1 0 1 2 3
0

0.5

1

1.5
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3

y × h

C
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t
fu
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ns

1y×h≤0

max(0, − y × h)
1

ln(2) × ln(1 + exp(−y × h))
max(0,1 − y × h)

(1 − y × h)2

⇒ Using a convex upper bound of the 0/1 loss, SRM casts into
the problem of minimizing a convex objective function.
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Convex functions: General definition

L(w)

b

b

w1 w2

L(w1)

L(w2)

w

∀w1,w2, θ ∈ [0, 1];L(θw1 + (1− θ)w2) ⩽ θL(w1) + (1− θ)L(w2)

q The extension of the above is called Jensen’s inequality:

∀wi, θi; i ∈ {1, . . . , N}; s.t. θi ⩾ 0,
N∑

i=1
θi = 1;L

(
N∑

i=1
θiwi

)
⩽

N∑
i=1

θiL(wi)
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Convex functions: Differentiable case
L(w)

b

b

w1 w2

L(w1)

L(w2)

w

If L is differentiable, it is convex iff
∀w1,w;L(w) ⩾ L(w1) +∇L(w1)(w −w1)

If L is twice differentiable, it is convex iff its Hessian matrix H
is positive semidefinite on the interior of the convex set S;

∀(w,w′) ∈ S2; w⊤Hw′ ⩾ 0.
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Property

q Consider the Taylor expansion of a convex, continuous and
twice differentiable objective function around its minimiser

L̂(w) = L̂(w∗)+(w−w∗)⊤∇L̂(w∗)︸ ︷︷ ︸
=0

+
1
2

(w−w∗)⊤H(w−w∗)+o(∥ w−w∗ ∥2)

q The Hessian matrix is symmetric hence its eigenvectors
(vi)d

i=1 form an orthonormal basis.

∀(i, j) ∈ {1, . . . , d}2,Hvi = λivi, et v⊤i vj =
{

+1 : si i = j,

0 : otherwise.

A good lecture on symmetric matrices and
eigendecomposition can be found here!
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Property (2)
q Every weight vector w −w∗ can be uniquely decomposed

in this basis

w −w∗ =
d∑

i=1
qivi

q That to say

L̂(w) = L̂(w∗) + 1
2

d∑
i=1

λiq
2
i

q Furthermore if w is in the neighborhood of the minimizer
w∗, we have by the definition of the minimum:

(w −w∗)⊤H(w −w∗) =
d∑

i=1
λiq

2
i = 2(L̂(w)− L̂(w∗)) > 0

H defined at w∗ is hence definite positive and all its
eigenvalues are strictly positive.
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Property (3)

q This implies that the level lines of L̂ at the neighborhood
of w∗, defined by weight points for which L̂ is constant, are
ellipses
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Gradient descent algorithm [Cauchy, 1867]

At each iteration t, on w(t)

q Estimate the descent direction pt (i.e. p⊤t ∇L̂(w(t)) < 0)
q Update

w(t+1) ← w(t) + ηtpt

// Where ηt is a positive learning rate making w(t+1) be
acceptable for the next iteration.

⇒ For its low complexity, GD is one of the main algorithms
that is used for the minimization of learning objective functions.
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Convergence of GD when pt = −∇L̂(wt)
q Take the decomposition of any vector w −w∗ in the

orthonormal basis (vi)d
i=1 formed by the eigenvectors of the

Hessian matrix

∇L̂(w) =
d∑

i=1
qiλivi

q Let w(t) be the weight vector obtained from w(t−1) after
applying the gradient descent rule with pt = −∇L̂(wt):

w(t)−w(t−1) =
d∑

i=1

(
q

(t)
i − q

(t−1)
i

)
vi = −η∇L̂(w(t−1)) = −η

d∑
i=1

q
(t−1)
i λivi

q So
∀i ∈ {1, . . . , d}, q(t)

i = (1− ηλi)tq
(0)
i

and the algorithm converges iff

0 < η <
2

λmax
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OK but how to find the good learning rate?
Wolfe conditions

q To find the sequence (w(t))t∈N following the line search
rule, the following necessary condition

∀t ∈ N, L̂(w(t+1)) < L̂(w(t))

is not sufficient to guarantee the convergence of the
sequence to the minimiser of L̂.

q In two situations, the previous condition is satisfied but
there is no convergence
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1. The decreasing of L̂ is too small
with respect to the length of the jumps

Consider the following example d = 1 ; L̂(w) = w2 with
w(0) = 2, (pt = (−1)t+1)t∈N∗ and (ηt = (2 + 3

2t+1 ))t∈N∗ . The
sequence of updates would then be

∀t ∈ N∗,w(t) = (−1)t(1 + 2−t)
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1. The decreasing of L̂ is too small
with respect to the length of the jumps

⇒ Armijo condition : require that for a given α ∈ (0, 1),

∀t ∈ N∗, L̂(w(t) + ηtpt) ⩽ L̂(w(t)) + αηtp⊤t ∇L̂(w(t))
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Armajio condition

η

y = L̂(w(t) + ηpt)

L̂(w(t))

y
=

L̂(w (t)) +
ηp T

t ∇
L̂(w (t))

y = L̂(w(t)) + αηpT
t ∇L̂(w(t))

η2
Admissible values of η according to Armijo’s condition

b
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2. The jumps of the weight vectors are too small

Consider the following example d = 1 ; L̂(w) = w2 with
w(0) = 2, (pt = −1)t∈N∗ and (ηt = (2−t+1))t∈N∗ . The sequence
of updates would then be

∀t ∈ N∗,w(t) = (1 + 2−t)
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2. The jumps of the weight vectors are too small

⇒ ∃β ∈ (α, 1) such that

∀t ∈ N∗,p⊤t ∇L̂(w(t) + ηtpt) ≥ βp⊤t ∇L̂(w(t))
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Curvature condition

η

y = L̂(w(t) + ηpt)

L̂(w(t))

y
=

L̂(w (t)) +
ηp T

t ∇
L̂(w (t))

slope: βp T
t ∇L̂(w (t))

y = L̂(w(t)) + αηpT
t ∇L̂(w(t))

η0aη0a2η0Admissible values of η

b

b
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Existence of learning rates verifying Wolfe
conditions

q Let pt be a descent direction of L̂ at w(t). Suppose that
the function ψt : η 7→ L̂(w(t) + ηpt) is derivative and lower
bounded, then there exists ηt verifying both Wolfe
conditions.

proof:
1. consider

E = {a ∈ R+ | ∀η ∈]0, a], L̂(w(t)+ηpt) ⩽ L̂(w(t))+αηp⊤
t ∇L̂(w(t))}

As pt is a descent direction of L̂ at w(t) then for all α < 1
there exists ā > 0 such that

∀η ∈]0, ā], L̂(w(t) + ηpt) < L̂(w(t)) + αηp⊤t ∇L̂(w(t))
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Existence of learning rates verifying Wolfe
conditions

2. So E ̸= ∅. Furthermore, as the function ψt is lower
bounded, the largest rate in E, η̂t = supE, exists. By
continuity of ψt we have

L̂(w(t) + η̂tpt) < L̂(w(t)) + αη̂tp⊤t ∇L̂(w(t))

3. Let (ηn)n∈N be a convergence sequence to η̂t by higher
values, i.e. ∀n ∈ N, ηn > η̂t and lim

n→+∞
ηn = η̂t. As

(ηn)n∈N /∈ E we get

∀n ∈ N, L̂(w(t) + ηnpt) > L̂(w(t)) + αηnp⊤t ∇L̂(w(t))

So
L̂(w(t) + η̂tpt) = L̂(w(t)) + αη̂tp⊤t ∇L̂(w(t))
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Existence of learning rates verifying Wolfe
conditions

4. We finally get

p⊤t ∇L̂(w(t) + η̂tpt) ≥ αp⊤t ∇L̂(w(t)) ≥ βp⊤t ∇L̂(w(t))

Where β ∈ (α, 1) and p⊤t ∇L̂(w(t)) < 0.

⇒ The learning rate η̂t verifies both Wolfe conditions
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Does it work?
Theorem (Zoutendijk)

Let L̂ : Rd → R be a differentiable objective function with a
lipschtizien gradient and lower bounded. Let A be an algorithm
generating (w(t))t∈N defined by

∀t ∈ N,w(t+1) = w(t) + ηtpt

where pt is a descent direction of L̂ and ηt a learning rate verifying
both Wolfe conditions. By considering the angle θt between the descent
direction pt and the direction of the gradient :

cos(θt) = p⊤
t ∇L̂(w(t))

||L̂(w(t))|| × ||pt||

The following series is convergent∑
t

cos2(θt)||∇L̂(w(t))||2
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Proof of Zoutendijk’s theorem

1. Using the second Wolfe’s condition and by subtracting
p⊤t ∇L̂(w(t)) from both terms of the inequality, we get

∀t,p⊤t (∇L̂(w(t+1))−∇L̂(w(t))) ≥ (β − 1)
(
p⊤t ∇L̂(w(t))

)
2. Using the lipschitzian property of the gradient of the

objective function

p⊤
t (∇L̂(w(t+1))−∇L̂(w(t))) ⩽ ||∇L̂(w(t+1))−∇L̂(w(t))|| × ||pt||

⩽ L||w(t+1) −w(t)|| × ||pt||
⩽ Lηt||pt||2
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Proof of Zoutendijk’s theorem

3. By combining both inequalities it comes

∀t, 0 ⩽ (β − 1)(p⊤t ∇L̂(w(t))) ⩽ Lηt||pt||2

4. For ηt ≥ β−1
L

p⊤
t ∇L̂(w(t))
||pt||2 > 0 we get from Armijo’s condition

L̂(w(t))− L̂(w(t+1)) ≥ −αηtp⊤
t ∇L̂(w(t))

≥ α1− β
L

(p⊤
t ∇L̂(w(t)))2

||pt||2

≥ α1− β
L

cos2(θt)||∇L̂(w(t))||2 ≥ 0
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Proof of Zoutendijk’s theorem

5. The objective function is lower bounded, the sequence of
general term L̂(w(t))− L̂(w(t+1)) > 0 is convergent

6. Hence, the series ∑
t

cos2(θt)||∇L̂(w(t))||2

is convergent.

Massih-Reza.Amini@imag.fr Mathematical Foundations of Machine Learning

Massih-Reza.Amini@imag.fr


116

Corollary of Zoutendijk’s theorem
Guarantee of convergence

q In the case where, the descente direction and the gradient
are not orthogonal :

∃κ > 0, ∀t ≥ T, cos2(θt) ≥ κ

q Following Zoutendijk’s theorem the series :∑
t

||∇L̂(w(t))||2

is convergent.
q Hence, the sequence (∇L̂(w(t)))t tends to 0 when t tends to

infinity.
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Backtracking Line Search

η

y = L̂(w(t) + ηpt)

L̂(w(t))

y
=

L̂(w (t)) +
ηp T

t ∇
L̂(w (t))

slope: βp T
t ∇L̂(w (t))

y = L̂(w(t)) + αηpT
t ∇L̂(w(t))

η0aη0a2η0Admissible values of η

b

b
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Real-life classification applications
q In most real-life classification applications the number of

classes is more than two.
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Multi-class classification problem

q There are two cases to be distinguished :
q the mono-label case, where each example is labeled with a

single class. In this case the output space Y is a finite set of
classes marked generally with numbers for convenience
Y = {1, . . . ,K},

q the multi-label case, where each example can be labeled
with several classes ; Y = {1,+1}K .

q In both cases, the learning algorithm takes a labeled
training set S = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m in
input where pairs of examples (x, y) ∈ X × Y are supposed
i.i.d. with respect to an unknown yet fixed probability
distribution D.
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Multi-class classification problem
q The aim of learning is then to find a prediction function

from F = {f : X → Y} with the lowest generalization
error :

L(f) = E(x,y)∼D[ℓ(f(x), y)], (14)
where, ℓ : Y × Y → R+ is the instantaneous classification
error, and f(x) = (f1(x), . . . , fK(x)) ∈ Y is a predicted
output vector for example x in the multi-label case, or the
class label of x in the mono-label case.

q In the multi-label case, the instantaneous error is based on
the Hamming distance that counts the number of different
components in the predicted, f(x), and the true class, y,
labels for x.

ℓ(f(x), y) = 1
2

K∑
k=1

(1− ykfk(x))
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Multi-class classification problem

q In the mono-label case, the instantaneous error is simply:

ℓ(f(x), y) = 1f(x) ̸=y

q As in binary classification, the prediction function is found
according to the Empirical Risk Minimization principle
using a training set
S = {(xi, yi); i ∈ {1, . . . ,m}} ∈ (X × Y)m :

f∗ = argmin
f∈F

L̂m(f, S) = argmin
f∈F

1
m

m∑
i=1

ℓ(f(xi), yi)
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Multi-class classification problem
q In practice, the function learned h is defined as :

h : Rd → RK

x 7→ (h(x, 1), . . . , h(x,K))

where h ∈ RX×Y , by minimizing a convex derivative upper
bound of the empirical error.

q For an example x, the prediction is hence obtained by
thresholding the outputs h(x, k), k ∈ {1, . . . ,K} for the
multi-label case, or by taking the class index giving the
highest prediction in the mono-label case:

∀x, fh(x) = argmax
k∈{1,...,K}

h(x, k)
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Approaches

q Combined approaches (on the basis of binary classification)
q One-versus-All (OvA),
q One-versus-One (OvO),
q Error-correction codes (ECOC).

q Uncombined approaches
q K-Nearest Neighbour (K-NN),
q Generative models,
q Discriminative models (MLP, M-SVM, M-AdaBoost, etc.)
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Combined approach - OvA

Algorithm 9 The OVA approach
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: for each k = 1 . . . K do
3: S̃ ← ∅
4: for each i = 1 . . . m do
5: if yi == k then
6: S̃ ← (xi, +1)
7: else
8: S̃ ← (xi,−1)
9: end if

10: end for each
11: Learn a classifier hk : X → R on S̃;
12: end for each
13: The final classifier: ∀x ∈ X , f(x) = argmax

k∈{1,...,K}
hk(x)
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Combined approach - OvA
O
vO

O
vA
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Combined approach - OvO

Algorithm 10 The OVO approach
1: Training set S = {(xi, yi) | i ∈ {1, . . . , m}}
2: for each k = 1 . . . K − 1 do
3: for each ℓ = k + 1 . . . K do
4: S̃ ← ∅
5: for each i = 1 . . . m do
6: if yi == k then
7: S̃ ← (xi, +1)
8: else if yi == ℓ then
9: S̃ ← (xi,−1)

10: end if
11: end for each
12: Learn a classifier hkℓ : X → R on S̃;
13: end for each
14: end for each
15: The final classifier: ∀x ∈ X , f(x) = argmax

y′∈Y,y′ ̸=y

∣∣{y | fyy′ (x) = +1}
∣∣

where, ∀x ∈ X ,∀(y, y′) ∈ Y2, y ̸= y′, fyy′ (x) =
{

sgn
(

hyy′ (x)
)

, if y < y′

−fy′y(x), if y′ < y
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Combined approach - OvO
O
vO

O
vA
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Combined approach - ECOC
This technique is composed of three steps :

q Each class k ∈ {1, . . . ,K} is first coded (or represented) by
a code word which is generally a binary vector of length n,
Dk ∈ {−1,+1}n,

q With the resulting matrix of codes D ∈ {−1,+1}K×n, n
binary classifiers (fj)n

j=1 are learned after creating n
training sets S̃j from the initial training set S :
∀(x, y) ∈ X×Y, ∀j ∈ {1, . . . , n}, the associated code is (x,Dy(j))

q To predict the class of an example x, let f(x) denote the
vector f(x) = (f1(x), . . . , fn(x)), the associated class is the
one having the lowest Hamming distance with the line
vectors of D:

∀x ∈ X , y∗ = argmin
k∈{1,...,K}

1
2

n∑
j=1

(1− sgn(Dk(j)fj(x)))
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Uncombined approach - K-NN
q The K-Nearest Neighbors algorithm is a non-parametric

method used for classification,
q The input consists of the K closest training examples in

the characteristics space.
q For each observation x ∈ X the class membership is

decided by a majority vote of its neighbours.
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Uncombined approach - Generative models
q Estimate p(y) and p(x | y) by maximizing the complete

log-likelihood,
q For prediction, use the Bayes rule p(y | x) ∝ p(y)× p(x | y)
q Affect an observation x to y∗ = argmaxy p(y | x)

Figure from Duda, Hart and Stork (Pattern Classification)
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Deep architecture for ImageNet [Krizhevsky,
Sutskever, Hinton, 2012]

q 60 million parameters, using 2 GPU – 6 days
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A new fashion in image processing
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ImageNet Results

q 2012 AlexNet
q 2013 ZFNet
q 2014 VGG
q 2015 GoogLeNet / Inception
q 2016 Residual Network
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What’s new in Deep Learning?

1. A lot of data (Big Data phenomena),
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What’s new in Deep Learning?
2. Big computers: GPU needed

Now 2 hours with Nvidia DGX-1, and enough Memory
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What’s new in Deep Learning?
3. Big architectures
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The deep learning time line
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q Open issues
▶ Fairness and explainability
▶ Do more with less: green learning
▶ Neural Architecture Search
▶ Theory needed
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