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We are interested in clustering techniques for document collections using mixture
models. The learning algorithm used is the EM algorithm. First, we examine a
basic method, then we examine a more sophisticated method that creates clusters
of documents while associating a level of abstraction to the words of the docu-
ments. To derive the formulas for re-estimating the parameters one will need to
solve minimization problems under equality constraints – the method to be used
for this is indicated in the appendix at the end of the exam text.

Question 1. Explain the differences between classification and clustering.

Question 2. What is a mixture model?

We consider a set of documents D, d ∈ D will designate a document, d =
w1w2. . . wl(d) where wi is the ith word of d and l(d) is the length in words of
d. P(d) denotes the probability of d and P(w) the word density. V denotes the
vocabulary, i.e. the set of all words that appear in the corpus. We will use a repre-
sentation of documents in the form of a bag of words: a document is assimilated
to all of its words, which are assumed to be statistically independent, i.e.

P(d) =

l(d)∏
j=1

P(wj).

Part I. For our basic clustering, we want to partition documents into q groups, a
given document belongs to exactly one cluster, we consider a mixture model with
q components P(d) =

∑q
k=1 P(k)P(d | k), where P(k) is the prior probability

of cluster k and P(d | k) is the density of component k. The likelihood of D is
P(D,Θ) =

∏
d∈D P(d), the log-likelihood of D with the mixture model is

L(D,Θ) =
∑
d∈D

log

(
q∑

k=1

P(k)P(d | k)

)
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where Θ denotes the parameters of the mixture namely P(k) and P(d | k), the
identifiers of the clusters k are here the hidden variables. We recall that the EM
algorithm is an iterative algorithm which maximizes the expectation – with respect
to the hidden variables, and for fixed a posterior probabilities P(k | d,Θ(t)) at
iteration t – of the likelihood of the complete data. These are the (d, k)1≤d≤D;1≤k≤q
with k the cluster of document d. For our mixture model, this expectation writes:

Q(Θ,Θ(t)) =
∑
d∈D

q∑
k=1

log(P(k)P(d | k)).P(k | d,Θ(t))

where Θ(t) indicates that the P(k | d,Θ(t)) which were estimated in step E, are
considered as constants when maximizing Q (step M).

Question 3. Present briefly the EM algorithm in this case.

Question 4. Explain why it is difficult to directly maximize this likelihood?

Question 5. Step E: show that

P(k | d,Θ(t)) =

∏
w∈V P(w | k)n(d,w)P(k)∑

k′
∏

w∈V P(w | k′)n(d,w)P(k′)

where n(d, w) is the number of times w is present in the document d.

Question 6. Step M: Let θw,k = P(w | k) and θk = P(k), these two quantities
will be the parameters of our mixture model that we will have to estimate. They
are subject to the following constraints:

∑
w∈V

θw,k = 1,∀k ∈ {1, . . . , q}; and
q∑

k=1

θk = 1

Express Q(Θ,Θ(t)) with respect to θw,k and θk.

Question 7. Write the associated Lagrangian and give the formulas for re-estimating
these parameters for step M. For this, we will solve the following constrained op-
timization problems:

• MaximizeQ(Θ,Θ(t)) with respect to θw,k under the constraints
∑

w∈V θw,k = 1,
∀k ∈ {1, . . . , q};

• Maximize Q(Θ,Θ(t)) with respect to θk under the constraint
∑q

k=1 θk = 1;
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Part II. We will now perform a hierarchical clustering by associating each wordw
of a document d with a hidden variable a which represents its level of “generality”
or “abstraction”. We suppose given a binary tree which structures the levels of
abstraction of the words. Each internal node of this tree will be associated with
a value of the hidden variable “level of abstraction” a. The clusters where the
documents will be placed will correspond to the leaves of the tree (see figure).
These variables a play a similar role with the words of the documents to that of
the variables k for the documents of the clusters. We denote by r the number of
values that these variables a can take. The learning will assign each document d
to a cluster k and each word of the document to a node a of the word hierarchy.
Thus, to the document d = w1w2. . . wl(d), will correspond the sequence of word
labels A = a1a2. . . al(d),

1

2 3

4 5 6 7

1 2 3 4clusters

Absraction
levels

Figure 1: 3 levels of abstraction, q = 4, r = 7, squares represent document clus-
ters, circles represent the abstraction variables. A document classified in cluster 3
may have a word wd, whose abstraction variable is ad = 3. If a node of the tree,
a, is not a parent of cluster k then P(a | k) = 0. Words in documents in cluster
3 can only be indexed by abstraction variables 1, 3, or 6 (bold path) which are
on the path between the root and the cluster. The most specific words of cluster
3 will have the label 6, the words common to all the clusters will have the label
1. When the clustering is finished, the most frequent words of the different nodes
offer summaries at different levels of resolution of the clusters which are below.

We introduce the following notations and constraints for the parameters of this
model:
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θw,a = P(w | a), which verify the constraint:
∑
w′∈V

θw′,a = 1;∀a = 1 . . . r

θa,k = P(a | k), which verify the constraint:
r∑

a′=1

θa′,k = 1;∀k = 1 . . . q

θk = P(k), which verify the constraint
q∑

k=1

θk = 1.

We consider a mixture model with the hidden variables that are; the identifiers of
the clusters and the levels of abstraction of the words in the tree. We suppose that:

• (H1): P(d | k, aj) = P(d | aj) = P(wj | aj);∀j ∈ {1, . . . , l(d)}

• (H2): P(d | k) =

l(d)∑
j=1

r∑
aj=1

p(wj | aj)p(aj | k)

• (H3): The expectation of the likelihood of the complete data simplifies to
the following form:

Q(Θ,Θ(t)) =
∑
d∈D

q∑
k=1

l(d)∑
j=1

r∑
aj=1

[
log(θwj ,ajθaj ,kθk)P(k, aj | d,Θ(t))

]
Question 8. Step E: Give the expression of conditionnal probabilities
P(k | d,Θ(t)) and P(aj | k, d,Θ(t)) with respect to the parameters of the model:
θw,a, θa,k and θk.
Question 9. Step M: Give the Lagrangian associated to Q(Θ,Θ(t)).
Question 10. Derive the re-estimate formulas for the parameters θw,a and θa,k.

Appendix
Let x = (x1, . . . , xn) be a real vector and A,B,C functions of x. We consider
the following constrained optimization problem:

Maximize A(x)
Under the constraints B(x) = 1 and C(x) = 1

We define the Lagrangian associated with this problem:

L(x, λB, λC) = A(x)− λB(B(x)− 1)− λC(C(x)− 1)

A necessary condition (we will consider that it is sufficient here) for x to be a
solution to the maximization problem is: ∂L(x,λB ,λC)

∂xi
= 0,∀i = 1, . . . , n.
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